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ABSTRACT: In the fr ork of ke tic-orienied models of trajectory formation,

.

we propose a model (§-model} that consists of a non-ki y ical system capable
of generating, as motor primitives, a family of curvilinear Irajectories. The model
links shape and speed by 8 of a common, scalar time base generator that drives

the integration of a translational and an anguler errvor.
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1. Introduction

It is known from experiments on reaching that there musi be an internal repre-
sentation of intermediate positions of the target {current or virtual targets) in
addition to the final one. This means that the central nervous system must be
able, as a response to perceived or internally generated target stimuli (discrete
input representation}, to derive virtualtrajectories (continuous hidden represen-
tation) that ultimately determine coordinated muscle contractions {detectable
output representation).

This papey proposes a biologically plausible dynamic mechanism of virtual
trajectory generation that is essentially based on the non-linear integration of
suitable motor errors, defined from a measurement of the discrepancy between
the final target configuration and the current configuration of the end effector.

With the term configuration we imply a positional component as well as a
component of orientation; in the case of planar trajectories, for example, the
former component can be represented by a pair of Cartesian coordinates and
the latter one by the orientation of the velocity vector.

In the paper we focus our atiention on primitive movements, i.e. patierns
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determined by a single target specification. In the discussion, we briefly face
the problem of complex trajectories, generated by a sequence of target specifi.
cations. )

Let us designate with r; and r(t) the final and the current position of the
target, respectively, and with r () the current position of the end effector,
In the view of the brain as a non-linear, adaptive dynamical system, a natura]
approach to trajectory formation is via a pair of weakly coupled non-linear dy.
namical systems: one which allows r to relax towards vy and the other which
pushes .y towards r. In other papers (MORASSO and SANGUINET]I, 92, 93,
94), we particularly address the latter system, whereas in this paper we ana-
lyze the former one (§-model), further developing previous studies (MORASSO
et al., 93).

This approach to trajectory formation is more coherent with dynamic mod-
els, like VITE (Vector Integration To Endpoint) (BULLOCK and GROSS-
BERG, 88, 89), than with stafic mechanisms, like the minimum-jerk model
{FLASH and HOGAN, 85) or the power-law model (VIVIANI and TERZUQ.
LO, 82).

In general, although the &-model can be classified as a kinematic-oriented
one — see (PLAMONDON et al., 93) — because it is independent of the actual
joint and muscle patterns, it is not completely unrelated from the dynamic
processes which underly joint and muscle control and indeed it shares with
them the same type of non-linear dynamies.

2. Modeling the speed profile

Stroke generation can be considered in general as the outcome of a dynamical
system that smoothly shifts a virtual target r = r{t) from an initial position
ro to a final position r;.

Let us consider the following parametric model for a generic straight line
trajectory: s
r(t) = ro + (r7 — ro) &(t) n
where the parameter § goes from § to 1 while time, ¢, varies from 0 to t; ({;
is the movement duration). The time profile of the trajectory is completely
determined by that of § = £(2). .

Several models were proposed for the velocity profile £(f) (see PLAMON.
DON et al. {93) for a comparison); for instance, the application of the minimam
jerk (FLASH and HOGAN, 85) cost index yields the following expression for
£(2):

£(t) = 67° — 157% + 1078 2

where 7 = {ft;, and corresponds to the following speed profile:

é) = f—j’-(r* —2r4 1Y) 3)
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Figure 1. Phase space diagram {top) and Speed profile (boilom) corresponding
to @ minimum jerk trajeciory

that is also displayed in Fig. 1 (bottom). However, the main problem with the
minimum jerk model, as well as with other kinematic-oriented models, is one of
physical implementation, i.e., it is difficult to conceive a biologically plausible
mechanism which is able to generate minimum jerk trajectories.

. Other kinematic models are focused mainly on the problem of fitting the
shape of the speed profile and so are even further from the biological domain.
An interesting attempt has been made by (PLAMONDON, 91, 92) in terms
of a stochastic approach which applies the central limit theorem to a popula-
tion of controllers working in cascade fashion. As an alternative, we adopt a
deterministic approach and attempt to model the population dynamics with a
small set of nonlinear dynamic equations. In particular, we propose that the
bell-shaped speed profile is determined by a non-linear dynamical system of
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Figure 2. Block diagram of the dynamical model for trajeclory generation

the type: .
=7/ O]
where the f(£) is implicitly defined by the phase space diagram corresponding
to the minimum jerk condition, displayed in Fig. 1 (top), and v is a gain factor.
One basic requirement on the output of the dynamical system described by
Eq. 4 is that £ should go from 0 to 1 in a finite time {;, whereas § should tend
to zero for t — 0 and ¢ — 1. In general, t; is given by

_1[de _K
BES LT TS )

where K is the area under the inverse of the curve in the phase space (Fig. 1,
top), i.e. it is a constant of the dynamical system, so that we can write ¥ =
K/t;; therefore, duration is inversely proportional to the gain factor v. A
sufficient condition for attaining a finite value is that f(£) is infinitesimal of
order n,n<1,forboth§ —0and £ — 1.

The above formulation of the problem of stroke generation may be repre.
sented by the block diagram of Fig. 2. Trajectory dyration and amplitude are
specified by acting on the gains of, respectively, the feedback and the output
connections; in particular, as regards the first one, gain is inversely proportional
to duration. This representation displays a distinctive feature of the dynamical
approach, i.e. the fact that time is not required as a control parameter.

A class of functions f(£) that naturally fits the condition of Eq. 5 and has
found many applications to non-linear problems in biology and ecology, is a
variant of the logistic growth model (MURRAY, 89), which is described by:

E=1lE1 -9 (6)

with e € (0,1). In this case, it can be shown that movement duration t; is
given by:
1T%(1-¢)

S ) @
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Under these conditions, the equilibrium configurations of the dynamical system
do not satisfy the Lipschitz condition because

df
i
This means that £ = 1 behaves as a terminal atiractor and £ = 0, which
is unstable, is a terminal repeller (BARHEN et al., 89). Figure 3 displays the
phase space diagrams and the velocity profiles corresponding to different values
ofe, forty =1s.
The peak speed is reached for £ = 0.5 and is proportional to the parameter

— 00 (8)

RE 1
Emaz = 'Y'iﬁg (9)
As regards the exponent e, it can be shown that the condition ¢ > 2/3 is
required so that the 377 time derivative of £(t) (jerk) exists att =0 and ¢ = t;.
In the simulations presented in next sections we will use e = 2/3 because a
preliminary comparison with experimental movements showed that it better
fits the data than, say, a value of 1/3. A systematic analysis will be carried out
in the future.

The v parameter has three.functions: (i) its transition from 0 to a finite
value triggers the time base generator, (ii) its modulation controls movement
duration, and (iii) its transition back to 0 can be used to reset the generator
and make it excitable for subsequent activation cycles.

In terms of neural network architectures, the block diagram of Fig. 2 may
be implemented as a sequentia! neural network, thus reminding the approach
proposed by (MASSONE and BIZZI, 89). What is different in the present
approach is that different strokes are supposed to be obtained from a com-
mon pattern generator, possibly made of a kind of sequential neural network.
Therefore, different strokes are not represented as different temporal patterns,
but are indeed coded in terms of target and timing informations (start time,
duration), that are used to modulate the common pattern generator.

Complex tasks, involving multiple targets to be reached with different time
constraints or a chain of strokes, may require more pattern generators that
work concurrently.

The idea of a parameterized pattern generator also occurs in the work of
(HOUK et al,, §0), who hypothesizes that the function of the cerebellum is to
modulate a set of adjustable pattern generators.

4. Non-linear integration of errors

The dynamical system for trajectory generation described by Eq. 4 and Eq. 1
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Figure 3. Outpul of the target generation mechanism: § = £(t) (top), £=£t)
(middle), and phase-space plot (bottom) for several values of the ezponent (1/3,

172, 2/3, 3/4)
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Figure 4. The VITE model

may also be expressed in terms of the weighted integration of an error signal
Ar=rp 1!

: fE®)

r(t) = —> % Ar 10

t) = S50 (10)
In this form, the model equals to VITE (Vector Integration To Endpoint} (BUL-
LOCK and GROSSBERG, 88, 89) and the term

FEW)
T- €0 (n

is what they call Go-function: ascalar, increasing function of time that controls
the initiation of the movement and the speed profile of the planned trajectory
{see Fig. 4). By controllingits shape, it is possible to obtain straight trajectories
with any kind of speed profiles; this is a powerful but & too un-constrained
mechanism because it leaves co degrees of freedom in the choice of the control
signal.

As a matter of fact, deviations of the shape of the speed profile from the
purely symmetric case observed in a great variety of experimental situations
are remarkably small and we think that it is more economic to model them as a
side effect of an intrinsically {quasi)symmetric mechanism, characterized by a
small number of parameters (possibly just one), than as the direct consequence
of a tunable, general purpose generation system.

The framework of dynamical models allows to specify the constraints on
the Go — function in order to get a symmetric, bell-shaped speed profile; in
particular, it is described by Eq. 11 and is characterized by a single parameter
(7) that linearly modulates peak speed. :

Our model (shortly called §&-model because £ is the normalized variable
of the time-base generator) is a development of VIT'E in two directions: (i)
reduction of the number of parameters and (ii) integration of translation and

g(t) =
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rotation, in such a way that straight trajectories are just a special case of the
dynamic behavior. '

The &-model includes three kinds of highly interacting dynamic components:
a time base generator {with a normalized output variable £ = £(1}), a transla.
tional motion planner and a rotational motion planner.

4.1. Straight trajectories

Let us start with straight movements; without any loss of generality, we can
choose a coordinate system with one axis, oriented as the line between the
initial and target point, call it r. In this case, the desired directions of the
trajectory at the initial and target points must be the same as the direction
from the initial point to the target point. As a consequence, we do not need
any error term about the direction of the trajectories but just a positional er-
ror (Ar = r; —r) for which we can define a translational error equation of the
following type: 4 A
r r -

prie I—:E'E (12)
The convergence of this equation, in the case of straight trajectories, can be
formally demonstrated in an easy way by defining ¥ = (r — r¢)/(r; — o) from

which we get:

dF _ 1-7%; A

TTTE T ®BTToE 13
Integrating the latter equation we get the general solution # = #(€) = 1 —c+¢f
where ¢ is an integration constant which must be equal to 1 in order to satisfy
the initial condition #(€ = 0) = 0. Thus #(£) = £ and the proof of convergence
for r = r(t) is obtained.

4.2. Curved trajectories

In this section we describe a computational model for the generation of curved
trajectories that is an extension of that proposed in the previous sections for
rectilinear strokes.

The model is not primarily intended to fit biological data:, although in-
spired by the above described dynamical approach, it is aimed at solving the
problem of generating planar point-to-point trajectories, like those occurring in
handwriting movements and, more in general, in robotic applications involving
complex curved trajectories (SANGUINETI et al.,, 93), under the constraints
of specified starting and arrival directions.

We assume that curved trajectories are planned in terms of a target point
ry and a target orientation 6 in relation to an initial status (ro, 6o). For rep-
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resenting these trajectories, it is convenient to consider an intrinsic coordinate
system where one axis is oriented as the current velocity vector and the other
one is perpendicular to it. The dynamics of the model is then described in
terms of the linear speed v and the turning speed w in relation to the goal of
simultaneously reaching the target with the desired orientation. For this pur-
pose we can use the same time base generator £ = £(f) and a couple of error
measures {a positional error Ar and an orientation error Af) endmg up with
a couple of interacting differential equations:

= (14)
w = """zf (15)

The two error terms are defined as follows. The positional term is simply the
norm of the difference between the final and the current position:

Ar = |y ~x(t)]] (16)
The orientation error is more complex and is defined in the following way:
A8 = Abyym + 2sinfe=dbeym /207 an

It is a hierarchical combination (instead of a more common linear combination)
of two terms: A,y and sind. In fact, the latter terms becomes more and
more relevant (in determining the value of Af) as the former one decreases.
The symmetry error is defined as Af,ym = —(# + 8;) and, as illustrated in
Fig. 5, the condition Af,ym = 0 is equivalent to a circular motion.

According to equation (17), it can be seen that while the error term for
symmetry is large (i.e. the trajectory is far from circular), the equation (15) is -
reduced to ©@+0 )

- fi

}E = i (18)
which works as a non-linear feedback control law to attain a symmetric con-
figuration. Such a condition is a terminal attractor for the equation which
would reach equilibrium at the same time t; of the time base generator. (Thls
can be shown to hold in a similar way to the demonstration of the previous
section.) However, in addition to this dynamic behaviour, the second error
term of the angular error expresses a circularity constraint: in any symmetric
configuration, there exists a unique circle which goes through both the present
and target points and has the present and target direction vectors as tangent
vectors. . .

Fig. b illustrates an exarmple of such a circle where O and R represent the
center and radius of the circle, respectively. When the trajectory proceeds on a
circular arc, the following relation between the angular velocity of the circular
arc, w, and the translational velocity, v, must hold: w = v/R (R is the radius
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Figure 5. Geometric consiraints in circular {rajectories

of the circle) and since Ar = 2Rsind for a circular motion, then we get the

differential equation
_ 2sinf;

w= T (19)

Thus, if the system starts from a symmetric configuration, the orientation
equation (15) is reduced to the previous one and this guarantees the stability
of the circular motion. In blending the two terms in the angular error function,
the parameter o measures the speed of relaxation to the symmetric condition
and thus the extent of the quasi-circular part of a trajectory.

It is difficult to demonstrate in a formal way the convergence of the overall
computational mechanism, i.e. the perfect synchronization between the pro-
cesses which bring, respectively, £(1;) to 1, 8(t;) to 67, and Ar to 0. This is
so, due to the complex non-linear interactions between the three dynamic pro-
cesses. However, simulation experiments demonstrated the robustness of the
mechanism, suggesting the probable existence of a global Lyapunov function
for the overall system.

5. Simulation results .

A number of trajectories were simulated by numerically integrating the 3 si-
multaneous equations (8), {14), and (15) of the £-model. For all the figures we
used the following values for the parameters: e = 2/3 and ¢ = 0.5.

In Fig. 6, the initial and target points were fixed, while several initial and
target directions satisfying the symmetric configuration condition were used.
The figure also shows the profiles of the translational and angular speed. The
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Circular trajectories
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Figure 6. Simulation of curved movements with symmetric initial condition-
s. Trajectories (lop); translational velocity profiles (middle); angular velocity
profiles (botiom) :
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former one, in particular, appears to be perfectly symmetric bell-shaped only
in the limiting case of straight movements.

Fig. 7 shows experiments with initial symmetry errors of dzﬁerent values
(up to 180 degrees). This is a more complex task for the £&-model. In the initis]
part of the trajectory, the dominant factor in equation (15) is the reduction of
the symmetry error, as it is clearly shown in Fig. 7 (bottom), and this implies
a clockwise rotation, until an inflection point is reached. Then, the sense of
rotation changes and, in the last part, the trajectory tends to become circular,
As shown in Fig. 7 (middle), the speed profile is single peaked if the initial
symmetry error is not too big, but can have two peaks in extreme cases.

6. Discussion

The underlying hypothesis in the above described computational model is that
circular trajectories are preferred by the planning system, as far as they are
feasible, whereas more complex, asymmetric situations are solved by reducing
a symmetry error.

As displayed from simulations, the model has very good convergence prop-
erties and is able to generate very complex trajectories (like the S-shaped ones
displayed in Fig. 7, top) in a single step (though the speed profile may have
one or two peaks).

What about the biological plausibility of this model'? Preliminary observa-
tions, performed with a digitizing tablet, have shown that: (i) circular strokes
tend to be selected, provided that the initial value of the angular error is not
too big, because in this case they would result into a very big radius and there-
fore a very long path; (ii) an almost linear relationship was found between
the initially imposed asymmetry angle and an index of bell-shapedness of the
speed profile, measured by the integral square error of the velocity profile with
respect to that predicted by the minimum jerk hypothesis for a straight line
trajectory. In both cases, if the initial error terms are too big, trajectory is
splitted into two or more steps (each denoted by a well marked peak in speed
profile).

Apart from biological plausibility, let us express a final comment, regarding
the compaciness of the model. A previous model (MORASSO and MUSSA I-
VALDI, 82) for handwriting trajectories was based on defining a stroke as a
circular arc, which only needs 2 parameters (target distance and radius of cur-
vature), but the representational power is too small because-it is necessary to
chain at least two strokes even for very simple curved trajectories, which are
indeed likely to be derived from a single motor plan.

Regarding minimum jerk models, we have to consider two different versions:
the first one (FLASH and HOGAN, 85) is based on a global optimization,
whereas in the second one (FLASH et al., 92) minimum jerk is supposed to
be applied at the level of single strokes (each corresponding to straight line
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Non circular trajectories
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trajectories).

In the first case, curved trajectories may be specified by one or two via.
poinis, thus resulting in 3 to 5 parameters (target distance and the relative
coordinates of each via-point). In the second case the number of parameters
is the same, but in this case the parameters are target distance and the posi-
tions of intermediate targets. However, in both models the number of required
parameters depends of the type of trajectory.

Conversely, the present model needs 3 parameters {target distance, initia}
and final orientations), but is able to represent equally well C-shaped and §-
shaped strokes and thus it has a greater representational power; this feature is
particularly desirable in a trajectory generation module for robotic manipula-
tors or model-based handwriting recognition systems.

If we consider complex trajectories, a simple composition mechanism, which
was already proposed in a previous paper {MORASSO and MUSSA IVALD],
82), is the linear summation of sequences of strokes appropriately delayed in
time, i.e. a coarticulation mechanism. In other words, if we indicate with
r; = ri(t) = si(t—1;; p;) the generic stroke produced by the dynamic mechanism
previously described, starting at time f; and tuned by the parameter vector
pi= [r},ﬂg, 6}, %), then an arbitrary trajectory can be expressed as follows:

r=rt)=) st~1t; Pi) (20)

Smooth trajectories require some co-articulation of subsequent strokes and this
implies that ;43 — #; < tj, which means that two or more stroke generators
must be simultaneously active, although with different activation times, during
trajectory formation.

Another mode of operation of this mechanism is the response to a sudden
change of the intended target. In this case, it is possible to think that some
parameters of a currently active stroke generator are suddenly changed without
having to abort it and/or to produce an additional stroke to the new target
location. v

As regards 3-dimensional trajectories, since some experiments (MORASSO,
83) indicate that trajectories are fundamentally piece-wise planar, it is possible
to extend the planar model above simply by adding to each stroke another pa-
rameter which specifies the plane of the stroke, e.g. the plane normal vector. In
this case, the composition equation (20) is still valid and is capable to produce
smooth trajectories with a continuously changing osculating plane.

A future development is to derive a reliable segmentation mechanism which
allows to fit real data with equation (20).
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