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 A B S T R A C T

Objective: Electroencephalograms (EEGs) are widely used to evaluate sleep. Changes in the shape of EEG 
amplitude distributions serve as useful indicators to characterize sleep stages. However, existing models lack 
the representational power to comprehensively capture the non-Gaussian characteristics of EEGs.
Methods: To address this limitation, we propose a novel skew-scale mixture model based on a skewed scale 
mixture structure. This model treats EEG amplitudes as random variables following a multivariate Gaussian 
distribution, whose mean vector and covariance matrix are weighted by scale and skewness parameters. These 
parameters are estimated using marginal likelihood maximization and used as features to quantify non-Gaussian 
characteristics such as tail weight and lateral asymmetry.
Results: The proposed model was validated through simulations and applied to EEG data from the Montreal 
Archive of Sleep Studies (MASS) dataset, which includes five sleep stages: wakefulness, REM, N1, N2, and N3. 
Compared to conventional probabilistic models (e.g., Gaussian and scale mixture models), the proposed model 
demonstrated superior ability to represent non-Gaussian characteristics, as evaluated by Bayesian Information 
Criterion (BIC) scores. Moreover, extracted features showed significant variation across sleep stages, reflecting 
stage-specific EEG characteristics such as slow waves and spindles.
Conclusion: The proposed skew-scale mixture model provides a unified framework for comprehensively 
representing the non-Gaussian characteristics of sleep EEGs, including lateral asymmetry.
Significance: This model offers the potential for applications such as improved classification accuracy and 
enhanced detection of characteristic waveforms, laying a foundation for future developments in automated 
sleep stage classification.
1. Introduction

Sleep is a vital physiological process that occupies approximately 
one-third of human life, supporting physical recovery and neurological 
health. According to the guidelines of the American Academy of Sleep 
Medicine (AASM), sleep is categorized into five stages: wakefulness 
(W), rapid eye movement (REM) sleep, and three non-REM sleep stages 
(N1, N2, N3) [1]. Defined by varying levels of brain activity and 
physiological changes, these stages play critical roles in memory consol-
idation [2] as well as in the diagnosis and management of psychiatric 
and sleep-related disorders [3,4].

Electroencephalograms (EEGs), recorded through scalp-attached
electrodes, are commonly used for sleep stage analysis. EEG signals 
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exhibit characteristic patterns such as slow waves, spindles, and K-
complexes depending on the depth of sleep [5]. However, manual 
sleep stage classification by experts based on these patterns is time-
consuming, requires significant expertise, and often suffers from inter-
rater variability [6]. This need for reducing subjectivity and improving 
efficiency has driven research into the quantitative characterization of 
sleep EEG features.

Most feature extraction methods have focused on analyzing
frequency-domain characteristics [7,8], nonlinear dynamics [9,10], or 
time-domain patterns [11,12]. While these approaches have proven 
effective, an emerging research direction involves modeling EEG am-
plitude distributions as random variables to explore their statistical 
properties. Recent studies have focused on probabilistic modeling of 
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EEG signals, demonstrating its effectiveness in applications such as 
seizure detection and emotional state classification [13–15]. This ap-
proach complements conventional feature extraction methods, which 
primarily rely on frequency-domain characteristics, nonlinear dynam-
ics, or time-domain patterns. By capturing statistical properties such as 
non-Gaussianity, these models provide additional insights that cannot 
be obtained through traditional analysis alone. Such an approach 
has the potential to enhance the understanding of sleep-related brain 
activity and contribute to the development of more robust EEG-based 
analysis frameworks.

The primary objective of this study is to formulate and validate a 
comprehensive framework for analyzing the non-Gaussian characteris-
tics of sleep EEG signals. To achieve this, we propose a novel skew-scale 
mixture model that extends existing EEG distribution models. This 
extension facilitates a more comprehensive statistical analysis of EEG 
signals. The effectiveness of the proposed model is evaluated through 
simulation experiments and its application to sleep EEG data.

The remainder of this paper is organized as follows. Section 2 re-
views related works, focusing on previous EEG distribution models and 
their applications. Section 3 describes the proposed model, parameter 
estimation methods, and feature extraction process. Sections 4 and 5 
present the experimental setup and results, followed by discussions in 
Section 6. Finally, Section 7 concludes the study and outlines future 
directions.

2. Related works

Recent advancements in EEG analysis have demonstrated the effec-
tiveness of modeling EEG signals as random variables to investigate 
their distributional properties. Such approaches complement traditional 
methods focusing on the time and frequency domains or nonlinear 
dynamics, enabling a more precise characterization of the probabilistic 
nature of EEG signals. Several studies have explored variations in the 
distributional properties of sleep EEG signals across different sleep 
stages, particularly in relation to sleep stage transitions [16–19]. These 
studies have shown that EEG signals often display heavy-tailed distri-
butions and asymmetry, which systematically vary with sleep depth. 
Such findings highlight that non-Gaussianity is an inherent property 
of EEG signals and suggest that probabilistic modeling is essential for 
accurately capturing these statistical variations across different sleep 
stages.

To quantify the non-Gaussianity of EEG signals, Furui et al. pro-
posed a scale mixture model [13]. By incorporating stochastic fluctu-
ations in the covariance matrix, this model successfully represented 
heavy-tailed EEG distributions and achieved high accuracy in epilep-
tic seizure detection [14]. Additionally, the scale mixture model has 
been applied to emotion recognition based on EEG signals, where it 
demonstrated superior performance in distinguishing between pleasant 
and unpleasant states compared to conventional feature-based meth-
ods [15]. Furthermore, this model was extended to sleep EEG analysis, 
showing potential for sleep stage classification by leveraging non-
Gaussianity as a distinguishing feature [20]. However, despite its ef-
fectiveness in capturing the tail behavior of EEG distributions, this 
model is inherently symmetric and lacks the ability to represent lat-
eral asymmetry in EEG amplitude distributions, limiting its descriptive 
power.

While existing studies have demonstrated the importance of non-
Gaussianity in EEG analysis, they have primarily focused on either 
heavy tails or asymmetry, without providing a unified framework that 
incorporates both characteristics. Given that EEG amplitude distribu-
tions often exhibit skewness—particularly in deeper sleep stages—
the inability of previous models to account for lateral asymmetry 
restricts their applicability. To address this limitation, this study pro-
poses a skew-scale mixture model, which extends the conventional 
scale mixture model by introducing a skewing function. This mod-
ification enables the representation of both tail weight and lateral 
2 
Fig. 1. Graphical representation of the stochastic relationship between the EEG signal 
𝐱 and the latent variables 𝑢 and 𝜏. The white nodes correspond to random variables, 
and the black nodes denote the parameters to be estimated.

asymmetry, thereby providing a more comprehensive characterization 
of EEG amplitude distributions. By formulating a probabilistic model 
that integrates these two aspects, our approach enhances the under-
standing of EEG distributional properties across different sleep stages. 
While this study primarily focuses on model formulation and valida-
tion, the proposed framework has potential applications in automatic 
sleep stage classification and feature-based EEG analysis, serving as a 
foundation for future advancements in sleep research.

3. Methods

The proposed method for analyzing sleep EEG signals involves the 
following key steps:

1. Model Formulation
We introduce a skew-scale mixture model to capture the non-
Gaussian characteristics of EEG distributions, including tail
weight and lateral asymmetry.

2. Parameter Estimation
The parameters of the proposed model, including the location, 
covariance, tail weight, and asymmetry, are estimated using an 
expectation–maximization (EM) algorithm.

3. Feature Extraction
The estimated parameters are used to extract key features rep-
resenting the distribution’s location, non-Gaussianity, amplitude 
scale, and asymmetry for sleep EEG analysis.

3.1. Model formulation

Fig.  1 shows an overview of the proposed skew-scale mixture model. 
In this model, an EEG 𝐱 ∈ R𝐿 measured using 𝐿 electrodes is treated 
as a random variable following a multivariate Gaussian distribution. 
By weighting the covariance matrix of this distribution using a latent 
variable 𝑢 ∈ R+ and introducing another latent variable 𝜏 ∈ R+ related 
to skewness, the non-Gaussianity of the EEG amplitude distribution is 
represented.

3.1.1. Symmetric scale mixture model
First, we introduce the scale mixture model for EEG developed by 

Furui et al. [13]. In the scale mixture model, the probability distribu-
tion of an EEG 𝐱 is given by 

𝑝(𝐱) = ∫ 𝑝(𝐱|𝑢)𝑝(𝑢)d𝑢. (1)

The conditional distribution of 𝐱 given 𝑢 is represented by the following 
multivariate Gaussian distribution:
𝑝(𝐱|𝑢) =  (𝐱|𝝁, 𝑢Σ)

= 1

(2𝜋)
𝐿
2
|𝑢Σ|

1
2

exp
[

− 1
2𝑢
𝑑(𝐱;𝝁,Σ)

]

, (2)
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where 𝝁 ∈ R𝐿 denotes the location vector and Σ ∈ R𝐿×𝐿 denotes 
the covariance matrix. 𝑑(𝐱;𝝁,Σ) denotes the square of the Mahalanobis 
distance: 
𝑑(𝐱;𝝁,Σ) = (𝐱 − 𝝁)𝖳Σ−1(𝐱 − 𝝁). (3)

The latent variable 𝑢 is assumed to be drawn from the following inverse 
gamma distribution:
𝑝(𝑢) = IG(𝑢|𝜈∕2, 𝜈∕2)

= 1
𝛤 ( 𝜈2 )

( 𝜈
2

)
𝜈
2 𝑢−

𝜈
2−1 exp

(

− 𝜈
2
𝑢−1

)

, (4)

where 𝜈 ∈ R+ denotes a degrees-of-freedom parameter that determines 
the shape of the inverse gamma distribution. From (1), (2), and (4), the 
marginal distribution 𝑝(𝐱) can be expressed as 

𝑝(𝐱) = ∫  (𝐱|𝝁, 𝑢Σ)IG(𝑢|𝜈∕2, 𝜈∕2)d𝑢. (5)

According to (5), since the stochastic behavior of the latent variable 
𝑢 induces fluctuations in the covariance matrix of the Gaussian distri-
bution, the resulting marginal distribution 𝑝(𝐱) is non-Gaussian with 
a heavier tail than the Gaussian distribution. Based on the aforemen-
tioned analysis, the EEG signal 𝐱 is modeled using a Gaussian scale 
mixture distribution, i.e., an infinite mixture of Gaussian distributions 
with different covariance matrices [13].

3.1.2. The skewing function
We introduce the skewing function to extend the symmetric scale 

mixture model described in 3.1.1, enabling the model to represent the 
lateral asymmetry of the distribution. First, the general form of a skew-
scale mixture distribution with a location vector 𝝁, covariance matrix 
Σ, and skew vector 𝝀 ∈ R𝐿 is given by the following equation [21]: 

𝑝(𝐱) = 2𝑝0(𝐱)𝛷
[

𝝀𝖳Σ− 1
2 (𝐱 − 𝝁)

]

, (6)

where 𝛷[⋅] denotes the cumulative distribution function of the standard 
Gaussian distribution, which operates as a skewing function containing 
𝝀 to represent the lateral asymmetry of the distribution. 𝑝0(𝐱) denotes 
an arbitrary scale mixture distribution, and by substituting (5) into it, 
we can derive the following skew-scale mixture model: 

𝑝(𝐱)=2∫  (𝐱|𝝁, 𝑢Σ)IG(𝑢|𝜈∕2, 𝜈∕2)d𝑢𝛷
[

𝝀𝖳Σ− 1
2 (𝐱−𝝁)

]

. (7)

Sampling and the derivation of the maximum likelihood estimating 
equation are difficult for forms involving cumulative distribution func-
tions, such as (7). To resolve this issue, we introduce a latent variable 
𝜏 that is independent of 𝑢 and define the conditional distribution of 𝐱
given 𝑢 and 𝜏 as follows: 

𝑝(𝐱|𝑢, 𝜏)=
(

𝐱|𝝁 + 𝜏
√

𝑢Σ
1
2 𝜹𝑢, 𝑢Σ

1
2
(

𝐈𝐿 + 𝝀𝑢𝝀𝖳𝑢
)−1

Σ
1
2
)

, (8)

where 𝜹𝑢 = 𝝀∕
√

𝑢−1 + 𝝀𝖳𝝀,𝝀𝑢 =
√

𝑢𝝀 and 𝐈𝐿 denotes the 𝐿-dimensional 
identity matrix. The latent variable 𝜏 is assumed to follow a half-
Gaussian distribution:
𝑝(𝜏) =  (𝜏|0, 1)

=
√

2
𝜋
exp

[

− 𝜏
2

2

]

. (9)

This allows the marginal distribution of 𝐱 to be expressed as a product 
of probability density functions only, as follows:

𝑝(𝐱) = ∬ 𝑝(𝐱|𝑢, 𝜏)𝑝(𝑢)𝑝(𝜏)d𝑢d𝜏

= ∬ 
(

𝐱|𝝁 + 𝜏
√

𝑢Σ
1
2 𝜹𝑢, 𝑢Σ

1
2
(

𝐈𝐿 + 𝝀𝑢𝝀𝖳𝑢
)−1

Σ
1
2
)

× IG (𝑢|𝜈∕2, 𝜈∕2) (𝜏|0, 1) d𝑢d𝜏. (10)

From (10), since 𝑝(𝐱) is marginalized with respect to the latent variables 
𝑢 and 𝜏, the characteristics of the proposed model are determined by 
3 
Fig. 2. Examples of changes in the probability density of the proposed model with 
respect to changes in the model parameters (𝐿 = 1). (a) Changing 𝜇 with 𝜈 = 3.0, 𝛴 =
100.0, and 𝜆 = 0. (b) Changing 𝜈 with 𝜇 = 0, 𝛴 = 100.0, and 𝜆 = 0. (c) Changing 𝛴 with 
𝜇 = 0, 𝜈 = 3.0, and 𝜆 = 0. (d) Changing 𝜆 with 𝜇 = 0, 𝜈 = 3.0 and 𝛴 = 100.0.

the parameters {𝝁, 𝜈,Σ,𝝀}. Here, 𝝁 determines the location; 𝜈, the tail 
weight; Σ, the spread; and 𝝀, the lateral asymmetry. Fig.  2 illustrates 
examples of the change in probability density of the proposed model 
with respect to changes in each parameter (𝐿 = 1).

In the proposed model, the non-Gaussianity of the amplitude distri-
bution is induced by changes in the tail weight and lateral asymmetry of 
the distribution. Therefore, by estimating 𝜈 and 𝝀 based on the observed 
EEGs, the non-Gaussianity of EEGs can be evaluated in terms of two 
metrics: tail weight and asymmetry. In addition, by estimating Σ and 
𝝁, the spread and location of the distribution can be evaluated.

3.2. Parameter estimation

We describe the method used to estimate the parameters of the 
proposed model. Given 𝑁 data points of EEG signals, 𝐗 = {𝐱𝑛 ∈ R𝐿; 𝑛 =
1, 2,… , 𝑁}, the parameters of the proposed model, {𝝁, 𝜈,Σ,𝝀}, can be 
estimated by maximizing the likelihood of the marginal distribution 
𝑝(𝐗) =

∏𝑁
𝑛=1 𝑝(𝐱𝑛). However, the direct optimization of 𝑝(𝐗) is often 

difficult because the maximum likelihood solution of the marginal 
likelihood function is generally of a complex form [22]. Therefore, 
in this study, the parameters are estimated using the expectation–
maximization (EM) algorithm [23], which is an efficient optimization 
method for models with latent variables.

First, the update equation in the EM algorithm is derived by trans-
forming the joint distribution 𝑝(𝐱𝑛, 𝑢𝑛, 𝜏𝑛) = 𝑝(𝐱𝑛|𝑢𝑛, 𝜏𝑛)𝑝(𝑢𝑛)𝑝(𝜏𝑛) in (10) 
into the following equivalent form (see Appendix):
𝑝(𝐱𝑛, 𝑢𝑛, 𝜏𝑛) = 2 (𝐱𝑛|𝝁, 𝑢𝑛Σ)IG(𝑢𝑛|𝜈∕2, 𝜈∕2)

×
(

𝜏𝑛|𝝀𝖳Σ
− 1

2 (𝐱𝑛 − 𝝁), 1
)

. (11)

The EM algorithm is a method that indirectly maximizes marginal 
likelihood by maximizing the expectation of the log-likelihood of the 
complete data, instead of directly maximizing the marginal likelihood. 
In this model, the log-likelihood of the complete data can be expressed 
using the joint distribution as follows: 

𝐿(𝐱𝑛, 𝑢𝑛, 𝜏𝑛) = ln
𝑁
∏

𝑛=1
𝑝(𝐱𝑛, 𝑢𝑛, 𝜏𝑛). (12)

Next, we estimate the parameters, {𝝁, 𝜈,Σ,𝝀}, such that the
marginal likelihood is maximized based on the following procedure:

(i) Initialize each parameter using an arbitrary initial value.
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(ii) E-step: Calculate the expectation of the log-likelihood of the 
complete data, denoted by 𝑄(𝝁, 𝜈,Σ,𝝀):
𝑄(𝝁, 𝜈,Σ,𝝀) = E

[

𝐿(𝐱𝑛, 𝑢𝑛, 𝜏𝑛)
]

= 𝑁 ln 2 − 𝑁
2

ln |Σ| − 1
2

𝑁
∑

𝑛=1

[

𝝀𝖳Σ− 1
2 (𝐱𝑛 − 𝝁)

]2

+ 𝑁𝜈
2

ln 𝜈
2
−
( 𝜈 + 𝐿

2
+ 1

)

𝑁
∑

𝑛=1
E[ln 𝑢𝑛]

−𝑁 ln𝛤
( 𝜈
2

)

−
𝑁
∑

𝑛=1

[

𝜈 + 𝑑(𝐱𝑛;𝝁,Σ)
2

]

E[𝑢−1𝑛 ]

+
𝑁
∑

𝑛=1
𝝀𝖳Σ− 1

2 (𝐱𝑛 − 𝝁)E[𝜏𝑛] −
1
2

𝑁
∑

𝑛=1
E[𝜏2𝑛 ]. (13)

Here, E[ln 𝑢𝑛] and E[𝑢−1𝑛 ] can be obtained by calculating the 
posterior distribution of 𝑢𝑛 and 𝑝(𝑢𝑛|𝐱𝑛), respectively, as follows:

E[ln 𝑢𝑛] = ln
𝜈 + 𝑑(𝐱𝑛;𝝁,Σ)

2
− 𝜓

( 𝜈 + 𝐿
2

)

, (14)

E[𝑢−1𝑛 ] = 𝜈 + 𝐿
𝜈 + 𝑑(𝐱𝑛;𝝁,Σ)

, (15)

where 𝜓(⋅) denotes the di-gamma function. Similarly, E[𝜏𝑛]
can be obtained by calculating the posterior distribution of 𝜏𝑛, 
𝑝(𝜏𝑛|𝐱𝑛), as follows: 

E[𝜏𝑛] = 𝝀𝖳Σ− 1
2 (𝐱𝑛 − 𝝁)+

𝜙[𝝀𝖳Σ− 1
2 (𝐱𝑛 − 𝝁)]

𝛷[𝝀𝖳Σ− 1
2 (𝐱𝑛 − 𝝁)]

, (16)

where 𝜙[⋅] denotes the probability density function of the stan-
dard Gaussian distribution.

(iii) M-step: Update the parameters by maximizing
𝑄(𝝁, 𝜈,Σ,𝝀). To improve the efficiency of estimation, an in-
termediate parameter, ∆ = 𝝀𝖳Σ− 1

2 , is defined, and the new 
estimates, new𝝁,newΣ, and new𝝀, are obtained as follows:

new𝝁 =

( 𝑁
∑

𝑛=1
E[𝑢−1𝑛 ]Σ−1 +𝑁∆∆𝖳

)−1

×
𝑁
∑

𝑛=1

(

E[𝑢−1𝑛 ]Σ−1𝐱𝑛 −∆E[𝜏𝑛] +∆∆𝖳𝐱𝑛
)

, (17)

new∆ =

( 𝑁
∑

𝑛=1
(𝐱𝑛 − 𝝁)(𝐱𝑛 − 𝝁)𝖳

)−1

×
𝑁
∑

𝑛=1
E[𝜏𝑛](𝐱𝑛 − 𝝁), (18)

newΣ = 1
𝑁

𝑁
∑

𝑛=1
E[𝑢−1𝑛 ](𝐱𝑛 − 𝝁)(𝐱𝑛 − 𝝁)𝖳, (19)

new𝝀 =newΣ
1
2 new∆. (20)

Owing to the unavailability of a closed-form equation for updat-
ing 𝜈, we adopt a binary search to identify its numerical solution 
that maximizes 𝑄(𝝁, 𝜈,Σ,𝝀): 
new𝜈 = argmax

𝜈
𝑄(new𝝁, 𝜈,newΣ,new𝝀). (21)

(iv) Using the updated parameters, calculate the log-marginal likeli-
hood ln 𝑝(𝐗) = ∑𝑁

𝑛=1 ln 𝑝(𝐱𝑛) and iterate steps (ii) and (iii) until it 
converges.

Using the aforementioned procedure, we can estimate the parameters, 
{𝝁, 𝜈,Σ,𝝀}, based on a measured EEG, 𝐱.

3.3. Feature extraction

To evaluate sleep EEGs, we extract the following four key features 
from the estimated distribution parameters.
4 
1. Non-Gaussianity corresponding to the tail weight (1∕𝜈):
As 𝜈 approaches infinity, the amplitude distribution converges 
to a Gaussian distribution, reducing the non-Gaussianity in the 
tail. Therefore, 1∕𝜈 is considered a feature representing the 
non-Gaussianity corresponding to the tail weight.

2. Location of the distribution (𝝁):
To evaluate the location parameter 𝝁, we calculate the mean 
of all elements, 𝝁, which reflects the central tendency of the 
distribution.

3. Amplitude scale (‖Σ‖F):
The Frobenius norm [24] of the covariance matrix Σ is calcu-
lated as: 

‖Σ‖F =

√

√

√

√

√

𝐿
∑

𝑖=1

𝐿
∑

𝑗=1
𝜎2𝑖𝑗 , (22)

where 𝜎𝑖𝑗 represents the elements of Σ. This feature character-
izes the overall amplitude scale of the EEG distribution.

4. Non-Gaussianity corresponding to lateral asymmetry (𝝀):
To evaluate the skewing parameter 𝝀, the mean of all elements, 
𝝀, is calculated. This feature captures the lateral asymmetry of 
the distribution.

In summary, by extracting these features
{𝝁, 1∕𝜈, ‖Σ‖F,𝝀}, the proposed method enables simultaneous eval-

uation of the distribution’s location, tail weight non-Gaussianity, am-
plitude scale, and lateral asymmetry. These features provide a compre-
hensive representation of the EEG distribution and its characteristics 
across different sleep stages.

4. Experiments

4.1. Simulation

To evaluate the accuracy of parameters estimated using the pro-
posed model, we conducted the following simulation-based experi-
ments. First, based on ancestral sampling [22], we generated a series 
of random numbers following a skew-scale mixture distribution using 
the following procedure:

(i) Generate a discrete series, {𝑢𝑡; 𝑡 = 1, 2,… , 𝑇 }, from random num-
bers following the inverse gamma distribution, IG(𝜈0∕2, 𝜈0∕2).

(ii) Generate a discrete series, {𝜏𝑡; 𝑡 = 1, 2,… , 𝑇 }, from random 
numbers following the half-Gaussian distribution,  (0, 1).

(iii) Generate a discrete series, {𝐱𝑡; 𝑡 = 1, 2,… , 𝑇 }, from random 
numbers following the Gaussian distribution:


(

𝝁0 + 𝜏𝑡
√

𝑢𝑡Σ
1
2
0 𝜹𝑢, 𝑢𝑡Σ

1
2
0 (𝐈𝐿 + 𝝀𝑢𝝀𝖳𝑢 )

−1Σ
1
2
0

)

,

where 𝜹𝑢 = 𝝀0∕
√

𝑢−1𝑡 + 𝝀𝖳0𝝀0,𝝀𝑢 =
√

𝑢𝑡𝝀0.

The generated random number series, {𝐱𝑡}, was regarded as a pseudo-
EEG signal recorded using a sampling frequency of 𝑓s Hz, and the 
distribution parameters were estimated using the procedure described 
in Section 3.2. Then, we compared the true values of the parame-
ters, {𝝁0, 𝜈0,Σ0,𝝀0}, with the estimated values, {𝝁̂, 𝜈̂, Σ̂, 𝝀̂} to verify 
the accuracy of parameter estimation. As an index of the estimation 
accuracy of each parameter, the absolute percentage error was defined 
as |𝜈0− 𝜈̂|∕|𝜈0|×100, ‖Σ0−Σ̂‖F∕‖Σ0‖F×100, ‖𝝀0− 𝝀̂‖2∕‖𝝀0‖2×100, and 
‖𝝁0 − 𝝁̂‖2∕‖𝝁0‖2 × 100, respectively.

To examine the effects of sample size and the number of input di-
mensions on the estimation accuracy of each parameter, the estimation 
window length, 𝑊 , was varied among 1, 2, 5, 10, 15, 20, 30, 50, and 100
s, and the number of dimensions, 𝐿, was varied among 2, 4, 8, and 16. 
The first 𝑊  s of {𝐱𝑡} were used for the estimation of each parameter. 
In this experiment, all elements were assigned identical values for 
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𝝁0 = {𝜇0𝑖} and 𝝀0 = {𝜆0𝑖}. For Σ0, the off-diagonal elements were 
taken to be 0.5 and only the diagonal elements, 𝜎0𝑖𝑖, were changed. 
The average absolute percentage error corresponding to each parameter 
was calculated by changing the combination of true values 240 times 
in aggregate: (𝜇0𝑖 = −5, 5; 𝜈0 = 2, 4, 6, 8, 10; 𝜎0𝑖𝑖 = 1, 10, 100, 1000; 𝜆0𝑖 =
−3,−2,−1, 1, 2, 3). To evaluate the calculation cost of the proposed 
analysis method, the computation time required for each parameter 
estimation was measured simultaneously. The values of 𝑇  and 𝑓s during 
random number series generation were taken to be 100 s and 500 Hz, 
respectively. The computer used in the experiment was an AMD Ryzen 
7 5800X (3.8 GHz), 32.0 GB RAM.

4.2. Sleep EEG analysis

To confirm the effectiveness of the proposed model for sleep EEG 
analysis, EEG signals corresponding to various sleep stages were an-
alyzed using the publicly available Montreal Archive of Sleep Studies 
(MASS) dataset [25]. The MASS dataset comprises overnight
polysomnography signals from 200 individuals, divided into five sub-
sets (SS1–SS5) based on acquisition protocols. In this study, we used the 
SS3 subset, which includes records from 62 healthy individuals (male: 
29, female: 33, mean age: 42.5 ± 18.9 years). Each record consists of 20 
EEG channels, 3 EMG channels, 2 EOG channels, and 1 ECG channel. 
EEG signals were recorded at a sampling rate of 256 Hz and processed 
with a 60 Hz notch filter, a 0.30 Hz low-cut filter, and a 100 Hz high-cut 
filter. The records were classified into five sleep stages (Stage W, R, N1, 
N2, N3) by experts according to the AASM standard [1], with a page 
size of 30 s.

In this experiment, we focused on the six primary EEG channels (F3, 
F4, C3, C4, O1, O2) commonly used in the AASM guidelines (see Fig. 
3). Each epoch was defined as a 30-s segment, and for each sleep stage 
(Stage W, R, N1, N2, N3), six epochs were randomly extracted from the 
entire record of each participant. To ensure relatively stable segments, 
only epochs where the preceding and following 30 s belonged to the 
same sleep stage were included. Participants for whom six epochs could 
not be secured for all sleep stages were excluded from the analysis. As 
a result, we obtained data for 43 participants, consisting of five sleep 
stages × six epochs each.

First, the validity of sleep EEG analysis using the proposed model 
was evaluated through model selection based on the Bayesian informa-
tion criterion [26] (BIC). The candidate group for model selection in-
cluded the proposed model, the conventional scale mixture model [13], 
the skew Gaussian model [27], and the Gaussian model. The parameter 
estimation method for the proposed model is described in detail in 
Section 3. The distribution parameters for the comparison models 
were optimized using maximum likelihood estimation, similar to the 
proposed model, and the corresponding log-likelihoods were computed. 
This consistent approach ensured that the BIC values reflected a fair 
comparison of model fitness while accounting for model complexity. 
BIC, defined as: 
BIC = −2 ln𝐿(𝜃̂) + 𝑘 ln(𝑁𝑊 ), (23)

where ln𝐿(𝜃̂) denotes the log-likelihood of the model, 𝑘 denotes the 
number of model parameters, and 𝑁𝑊  denotes the sample size used 
during estimation. BIC was chosen because it balances the fitness and 
simplicity of a model, penalizing more complex models to prevent 
overfitting, and it asymptotically selects the model that is closest to the 
true data-generating distribution as the sample size increases. Models 
with a smaller BIC are thus interpreted as having a higher probability 
of being true models. The models of the candidate group were fitted 
to all epochs, and the percentages of models with the smallest BIC at 
different stages were compared.

Next, the relationship between the proposed feature and each stage 
was investigated using group comparison among all stages. We calcu-
lated the features, {𝝁, 1∕𝜈, ‖Σ‖F,𝝀}, using the distribution parameters 
obtained by fitting the proposed model to each epoch. Then, to account 
5 
Fig. 3. International 10–20 electrode montage.

for individual differences during comparison, we introduced a general-
ized linear mixed model, with the stage as a fixed effect and individual 
differences as random effects, and conducted pairwise comparison tests 
based on estimated marginal means. Holm adjustment was used to 
correct the 𝑝 values in multiple comparisons, and the significance level 
was taken to be 5%. For distributions of the response variables, a 
Gaussian distribution was taken for 𝝁 and 𝝀, and a gamma distribution 
was taken for 1∕𝜈 and ‖Σ‖F in consideration of the non-negativity of 
the parameters. The analyses based on generalized linear mixed models 
were performed using the lme4 [28] and emmeans [29] packages 
in R version 4.1.1. The experiments were approved by the Research 
Ethics Review Board of the Graduate School of Humanities and Social 
Sciences at Hiroshima University (Approval number: HR-PSY-002210, 
HR-PSY-00211).

5. Results

Fig.  4 depicts examples of artificially generated pseudo-EEG signals, 
{𝐱𝑡}. In Fig.  4(a), the location of the waveform is observed to be 
displaced in the negative direction with 𝜇0𝑖 = −30.0 and then in the 
positive direction with 𝜇0𝑖 = 30.0. In Fig.  4(b), as 𝜈0 varies from 𝜈0 = 2.0
to 𝜈0 = 10.0, the frequency of outliers is observed to decrease, and 
the waveform stabilizes. In Fig.  4(c), as 𝜎0𝑖𝑖 varies from 𝜎0𝑖𝑖 = 1.0 to 
𝜎0𝑖𝑖 = 100.0, the amplitude of the waveform increases. In Fig.  4(d), the 
waveform is deflected in the negative direction with 𝜆0𝑖 = −2.0, and 
it is deflected in the positive direction with 𝜆0𝑖 = 2.0. Fig.  5 depicts 
the average absolute percentage errors for the estimation of {𝝁, 𝜈,Σ,𝝀}
and the average computation time for different values of the window 
length, 𝑊 , and number of dimensions, 𝐿.

Fig.  6 depicts examples of the recorded EEGs corresponding to each 
stage. The probability density histograms of the EEGs obtained from 
these data are illustrated in Fig.  7. In the figure, the results of fitting 
the proposed model, scale mixture model, skew Gaussian model, and 
Gaussian model are depicted using the solid red line, dashed blue 
line, dotted green line, and solid black line, respectively. In the EEGs 
corresponding to Stage W, R, N1 and N2, high-frequency and low-
amplitude waves are dominant. In particular, in Stage N2, sudden 
large-amplitude waveforms that stand out from the background activity 
are observed (Fig.  6). In contrast, low-frequency, high-amplitude waves 
are observed to be dominant in Stage N3, and they are deflected in the 
negative direction. Table  1 lists the percentage of times that the BIC of 
each model is minimized in comparison with that of the other models 
for each sleep stage. The table also records the McNemar test results 
(significance level: 5%) adjusted using the Holm method by considering 
the proposed model as a control group. For all stages, the proposed 
model exhibited a significantly higher rate of achieving a minimized 
BIC. Furthermore, Fig.  8 presents boxplots of the BIC distributions for 
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Fig. 4. Examples of generated artificial EEG signals (𝑊 = 20 s, 𝐿 = 2). (a) Changing 
𝜇0𝑖 with 𝜈0 = 6.0, 𝜎0𝑖𝑖 = 10.0 and 𝜆0𝑖 = 0. (b) Changing 𝜈0 with 𝜇0𝑖 = 0, 𝜎0𝑖𝑖 = 10.0 and 
𝜆0𝑖 = 0. (c) Changing 𝜎0𝑖𝑖 with 𝜇0𝑖 = 0, 𝜈0 = 6.0 and 𝜆0𝑖 = 0. (d) Changing 𝜆0𝑖 with 
𝜇0𝑖 = 0, 𝜈0 = 6.0, and 𝜎0𝑖𝑖 = 10.0.

each model. The figure also includes the results of the Wilcoxon signed-
rank test adjusted using the Holm method. Significant differences were 
observed in all pairwise model comparisons. The results indicate that 
the proposed model consistently achieves significantly lower BIC values 
across various sleep stages compared to the other models.

Fig.  9 presents the box and violin plots of the calculation results of 
{𝝁, 1∕𝜈, ‖Σ‖F,𝝀} for all participants at each stage. The figure also illus-
trates the results of pairwise comparison tests based on the estimated 
marginal means. Significant differences are observed in all pairwise 
comparisons except Stage W vs. Stage N1, Stage W vs. Stage N2, Stage 
R vs. Stage N1 in 𝝁, Stage R vs. Stage N1, Stage R vs. Stage N3 in 1∕𝜈, 
Stage R vs. Stage N1 in ‖Σ‖F and Stage W vs. Stage N1, Stage W vs. 
Stage N2 in 𝝀. Table  2 presents the estimated marginal means, with 
95% confidence intervals and standard errors of the features at each 
stage. In 𝝁 and 𝝀, Gaussian distributions are taken as distributions of the 
response variables; thus, the standard errors are pooled across stages.

6. Discussion

The simulation experiments revealed the average absolute percent-
age error to be approximately 19% for 𝝁, 11% for 𝜈, 17% for Σ, and 
30% for 𝝀 at 𝑊 = 1 (Fig.  5). Meanwhile, at 𝑊 = 100 s, the average 
6 
Fig. 5. Average absolute percentage errors and computation time for each combination 
of window length, (𝑊 ), and the number of dimensions, (𝐿), during parameter 
estimation. (a) Location vector, 𝝁. (b) Degrees of freedom, 𝜈. (c) Covariance matrix, 
Σ. (d) Skew vector, 𝝀. (e) Average computation time.

Table 1
Percentages of times each model was selected for different sleep stages based on the 
BIC.
 Sleep stages Model

 Proposed Scale mixture Skew Gaussian Gaussian 
 W 83.72% 15.12%* 1.16%* 0%*  
 R 89.53% 10.08%* 0.39%* 0%*  
 N1 81.40% 17.83%* 0.77%* 0%*  
 N2 82.56% 17.44%* 0%* 0%*  
 N3 95.74% 2.71%* 1.55%* 0%*  
* Significant difference with the skew-scale mixture model as identified using a 
McNemar test (p < 0.001).

absolute percentage error for each parameter was approximately 3%, 
indicating high estimation accuracy. This was attributed to the expan-
sion of the sample size used for parameter estimation and the increasing 
proximity of the sample distribution and the population distribution 
with an increase in the estimation window. Further, as the number of 
dimensions, 𝐿, was increased, the average absolute percentage error 
decreased for 𝜈 and increased for Σ and 𝝀. This was attributed to 
the fact that 𝜈 is a one-dimensional parameter defined for inputs of 
all dimensions; thus, increasing the number of dimensions increases 
the sample size used for estimation and reduces the estimation error. 
In contrast, Σ and 𝝀 are multidimensional parameters with different 
estimates for each dimension. In this study, we used the Frobenius 
norm for Σ and the squared norm for 𝝀 to calculate the absolute 
percentage error. As a result, increasing the number of dimensions 
would have increased the overall error. In Fig.  5(e), a non-linear 
increase in computation time with the increase of window length 𝑊
and the number of dimensions 𝐿 was observed. This increase was 
particularly prominent when dealing with high-dimensional data, with 
the maximum computation time reaching approximately 1500 s when 
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Fig. 6. Examples of measured EEG signals corresponding to each sleep stage.
Fig. 7. Density histograms of recorded EEGs corresponding to all sleep stages. Fitted 
distributions estimated based on the proposed model, scale mixture model, skew 
Gaussian model, and Gaussian model are indicated using solid red, dashed blue, dotted 
green, and solid black lines, respectively.

𝐿 = 16 and 𝑊 = 100 s. This suggests that calculations in high-
dimensional space involve complexity, causing the computation cost to 
increase exponentially. The effect of changes in window length 𝑊  on 
computation time was also evaluated. As shown in Fig.  5(e), when the 
window length increases, the computation time also increases, but the 
pattern of this increase varies depending on the number of dimensions. 
Specifically, when the number of dimensions 𝐿 is small, the increase 
in computation time due to the extension of the window length is 
relatively gradual, whereas in high-dimensional cases, a sharp increase 
is observed. This indicates that the interaction between the window 
length and the number of dimensions significantly impacts the compu-
tation cost. Furthermore, based on the simulation results of estimation 
accuracy and computation time, practical scenarios for actual sleep EEG 
analysis were considered. For instance, assuming the use of F3, F4, C3, 
C4, O1 and O2 electrodes (𝐿 = 6) and setting the window length 𝑊  to 
30 s, the proposed method can estimate all parameters with an absolute 
percentage error of about 4% in approximately 30 s.

In the sleep EEG analysis experiment, the proposed model was 
found to be the most suitable model, as it consistently achieved the 
lowest BIC values across all sleep stages (Table  1). Furthermore, the 
proposed model exhibited significantly lower BIC values than con-
ventional models, further supporting its effectiveness in sleep EEG 
7 
Fig. 8. Box plots showing the distribution of BIC values for Proposed model, Scale 
mixture model, Skew Gaussian model, and Gaussian model in each sleep stage. The 
statistical test results of the Wilcoxon signed-rank test are also presented.

analysis (Fig.  8). This result can be attributed to the fact that the 
model parameters capture both the tail weight and the lateral asym-
metry of the distribution, allowing for a more flexible representation 
of distributional changes across sleep stage transitions. As shown in 
Fig.  7, EEG amplitude distributions exhibited non-Gaussian tendencies 
across all sleep stages, leading to high selection rates for both the 
proposed model and the conventional scale mixture model. Notably, 
in Stage N3, where the proposed model achieved the highest rate 
of BIC minimization, the EEG distribution was not only heavy-tailed 
but also asymmetric, with the tail extending more prominently in the 
negative direction. Since the conventional scale mixture model and the 
general skew Gaussian distribution can only capture either heavy tails 
or asymmetry independently, they were unable to fully describe such 
distributions. In contrast, the proposed model successfully captured 
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Fig. 9. Box plots and violin plots of the proposed features for all participants. (a) 𝝁: 
location of the distribution. (b) 1∕𝜈: non-Gaussianity corresponding to tail weight. (c) 
‖Σ‖F: amplitude scale. (d) 𝝀: non-Gaussianity corresponding to lateral asymmetry. The 
statistical test results for pairwise comparisons of marginal means based on generalized 
linear models are also presented.

both characteristics simultaneously, making it a more comprehensive 
tool for sleep EEG analysis. Thus, these results demonstrate that the 
proposed model provides a more effective probabilistic representation 
of sleep EEG amplitude distributions compared to conventional models.

In Fig.  9 and Table  2, it is apparent that the proposed features 
depend significantly on transitions between sleep stages. The non-
Gaussianity corresponding to the tail weight, 1∕𝜈, was higher during 
Stage W and tended to increase with sleep intensity, peaking at Stage 
N2 and then decreasing at Stage N3. Meanwhile, 𝝀, which represents 
non-Gaussianity corresponding to the asymmetry, increased in the 
negative direction as sleep deepened, attaining a maximum at Stage 
N3. These trends are consistent with those reported in previous studies 
on the non-Gaussianity of sleep EEG [16,17] and are apparent from 
the example of the measured waveform depicted in Fig.  6 and the 
histogram depicted in Fig.  7.

The characteristic change in 1∕𝜈 is attributed to the influence 
of characteristic waveforms identified during non-REM sleep. During 
Stage N1, a characteristic wave called the vertex sharp wave appeared 
around the parietal region [30]. The vertex sharp wave is a negative 
sharp wave that is prominently distinguished from background activity. 
The sudden change in amplitude associated with the appearance of this 
waveform may have induced a heavier tail in the distribution within the 
estimation window, thereby increasing 1∕𝜈. Then, as sleep transitioned 
into Stage N2, characteristic waves called K-complex and sleep spindle 
appeared in the parietal region in addition to the vertex sharp waves. 
The K-complex is a waveform consisting of a negative sharp wave fol-
lowed by a positive slow wave exceeding 200 μV, and the sleep spindle 
is a rhythmic wave with a frequency of 12–16 Hz [31]. The effects 
of these waveforms may have increased 1∕𝜈 during Stage N2. Further, 
as sleep transitioned into Stage N3, low-frequency high-amplitude 
waves called 𝛿 activity became dominant. Since the percentage of 𝛿
activity increases as sleep deepens (more than 20% at Stage N3 [1]), 
it is possible that the relative percentage of outliers decreased in 
Stage N3, inducing a lighter tail of the distribution and decreasing 
1∕𝜈.

The change in 𝝀 is believed to be influenced by the hyperpolar-
ization shift (down state) of the neuronal membrane potential during 
sleep. During the deep sleep stage, the duration of the down state 
increases, and the recorded EEG is in the form of a negative slow 
wave from the scalp surface [32]. Therefore, the asymmetry of the 
8 
Table 2
Marginal means, standard errors, and 95% confidence intervals estimated using gener-
alized linear mixed models.
 Feature Sleep stage Estimated SE Confidence interval
 marginal mean Lower Upper  
 

𝝁

W 0.017 0.26 −0.494 0.527  
 R −0.867 0.26 −1.377 −0.356  
 N1 −0.369 0.26 −0.879 0.142  
 N2 0.665 0.26 0.154 1.176  
 N3 7.316 0.26 6.805 7.827  
 

1∕𝜈

W 0.2001 0.01080 0.180 0.222  
 R 0.1031 0.00553 0.093 0.114  
 N1 0.1166 0.00628 0.105 0.130  
 N2 0.1521 0.00816 0.137 0.169  
 N3 0.0911 0.00489 0.082 0.101  
 

||𝚺||F

W 1061 85.9 905 1244  
 R 410 33.0 350 480  
 N1 407 32.7 347 476  
 N2 853 68.7 728 999  
 N3 3824 307.0 3266 4476  
 

𝝀

W 0.0153 0.0129 −0.0101 0.0407  
 R 0.0848 0.0129 0.0593 0.1102  
 N1 0.0406 0.0129 0.0152 0.0660  
 N2 −0.0191 0.0129 −0.0445 0.0063  
 N3 −0.2308 0.0129 −0.2562 −0.2054  

distribution is believed to have originated in Stage N2 and N3, and 𝝀
is believed to have increased in the negative direction.

In contrast to 𝝀, the location of the distribution, 𝝁, exhibited an 
increasing trend with growing sleep intensity. This can be attributed to 
the fact that 𝝁 compensates for the variation in the expected value of 
the distribution induced by the effect of 𝝀. From the examples depicted 
in Figs.  6 and 7, it is apparent that the expected value of the distribution 
(i.e., the mean) was approximately zero even when the distribution was 
deflected in the deep sleep stage. The expected value of the skew-scale 
mixture model is given by 

E[𝐱] = 𝝁 +
√

2
𝜋
E

[

1
√

𝑢−1(𝑢−1 + 𝝀𝖳𝝀)

]

Σ
1
2 𝝀. (24)

According to (24), the expected value of the distribution depends not 
only on the location parameter, 𝝁, but also on 𝝀 appearing in the 
second term. Therefore, if the effect of the second term on the right-
hand side increases because of an increase in the absolute value of 𝝀
induced by the skewed distribution, 𝝁 in the first term increases in the 
opposite direction to ensure that the expected value of the left-hand 
side remains close to zero. There was no substantial change in ‖Σ‖F
during the stages from Stage W to N2, but it increased significantly in 
Stage N3. This was attributed to the high-amplitude slow-wave nature 
of EEG with the growing intensity of sleep [32] and the reflection of 
the high-amplitude feature in the distribution spread in Stage N3.

These results indicate that the proposed model can be used to 
evaluate changes in non-Gaussianity and amplitude scale associated 
with various EEG activity patterns during sleep in a unified manner. 
The features of non-Gaussianity proposed in this study reflect different 
aspects of the frequency and nonlinear dynamics of EEG that have 
been studied in the past. Therefore, by using the proposed features 
in addition to the conventional features, the proposed model may be 
applied to the automatic classification of sleep stages and detection of 
characteristic sleep waves.

7. Conclusion

We proposed a skew-scale mixture model to analyze the non-
Gaussianity of sleep EEG. The proposed model can represent non-
Gaussian distributions with respect to the tail weight and lateral 
asymmetry of the EEG distribution by introducing a skewing function 
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into the scale mixture model. The parameters characterizing the distri-
bution were estimated based on marginal likelihood maximization and 
defined as indicators of the location, spread, and non-Gaussianity of the 
distribution.

Simulation experiments were conducted to verify the estimation 
accuracy of the proposed model parameters corresponding to varying 
estimation window lengths and numbers of dimensions. The results 
indicated that all parameters could be estimated with an error of less 
than 4% when the estimation window length was greater than 30 s. 
In the sleep EEG analysis experiment, we analyzed EEGs correspond-
ing to Stage W, R, N1, N2 and N3. Model selection was performed 
for several stochastic models, suggesting that the proposed model is 
appropriate for EEG at all sleep stages. Further, the proposed features 
of non-Gaussianity, amplitude scale, and distribution location changed 
significantly during transitions between sleep stages. The relationship 
between the changes in these features and the characteristic activities 
of sleep EEGs suggests that the proposed model can be applied to the 
automatic classification of sleep stages and detection of characteristic 
sleep waves.

Several limitations remain in this study. First, the proposed method 
has limitations in its application to real-time analysis, as the computa-
tion time increases significantly depending on the window length and 
the number of dimensions. Particularly when using high-dimensional 
data or long window lengths, the computational load may become 
a bottleneck, potentially compromising real-time performance. There-
fore, further optimization of the algorithm and the introduction of 
parallel computing are necessary.

Second, while this study conducted simulation experiments and 
analyzed sleep EEG data to verify the accuracy and effectiveness of 
the proposed method, it did not specifically evaluate its application 
to practical tasks such as the automatic classification of sleep stages 
or the detection of characteristic sleep waves. Further validation and 
improvement in these practical applications are required in future 
research.
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Appendix. Equivalent expression for joint distribution

This appendix shows that the joint distributions given by (10) and 
(11) are equivalent. From (10), the joint distribution of 𝐱𝑛, 𝑢𝑛, 𝜏𝑛 is given 
by

𝑝(𝐱𝑛, 𝑢𝑛, 𝜏𝑛)

= 
(

𝐱𝑛|𝝁 + 𝜏𝑛
√

𝑢𝑛Σ
1
2 𝛿𝑢𝑛 , 𝑢𝑛Σ

1
2
(

𝐈𝐿 + 𝝀𝑢𝑛𝝀
𝖳
𝑢𝑛

)−1
Σ

1
2

)

× (𝜏𝑛|0, 1)IG(𝑢𝑛|𝜈∕2, 𝜈∕2). (25)
9 
Here, the probability density function of the half-Gaussian distribution 
can be expressed as  (𝜏𝑛|0, 1) = 2 (𝜏𝑛|0, 1) for 𝜏𝑛 ∈ [0,∞). Further, 
by substituting 𝐀 = 𝑢𝑛Σ

1
2 𝛿𝑢𝑛 ,Σ𝑎 = 𝑢𝑛Σ

1
2 (𝐈𝐿 + 𝝀𝑢𝑛𝝀

𝖳
𝑢𝑛
)−1Σ

1
2  and 𝛬 =

(1 + 𝐀Σ−1
𝑎 𝐀𝖳), (25) can be transformed as follows [21]:

𝑝(𝐱𝑛, 𝑢𝑛, 𝜏𝑛)
= 2

(

𝐱𝑛|𝝁 + 𝜏𝑛𝐀,Σ𝑎
)

 (𝜏𝑛|0, 1)IG(𝑢𝑛|𝜈∕2, 𝜈∕2)

= 2
(

𝐱𝑛|𝝁,Σ𝑎 + 𝐀𝐀𝖳
)

 (𝜏𝑛|𝛬𝐀𝖳Σ−1
𝑎 (𝐱𝑛 − 𝝁), 𝛬)

× IG(𝑢𝑛|𝜈∕2, 𝜈∕2)

= 2
(

𝐱𝑛|𝝁, 𝑢Σ
)

 (𝜏𝑛|𝛬
1
2 𝝀𝖳Σ− 1

2 (𝐱𝑛 − 𝝁), 𝛬)

× IG(𝑢𝑛|𝜈∕2, 𝜈∕2)

= 2
(

𝐱𝑛|𝝁, 𝑢Σ
)

 (𝜏𝑛|𝝀𝖳Σ
− 1

2 (𝐱𝑛 − 𝝁), 1)

× IG(𝑢𝑛|𝜈∕2, 𝜈∕2). (26)

This proves that (25) and (11) are equivalent.
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