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A Hybrid Motion Classification Approach for
EMG-Based Human–Robot Interfaces Using
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Abstract—In a human–robot interface, the prediction of motion,
which is based on context information of a task, has the potential
to improve the robustness and reliability of motion classification to
control prosthetic devices or human-assisting manipulators. This
paper proposes a task model using a Bayesian network (BN) for
motion prediction. Given information of the previous motion, this
task model is able to predict occurrence probabilities of the motions
concerned in the task. Furthermore, a hybrid motion classification
framework has been developed based on the BN motion prediction.
Besides the motion prediction, electromyogram (EMG) signals are
simultaneously classified by a probabilistic neural network (NN).
Then, the motion occurrence probabilities are combined with the
NN classifier’s outputs to generate motion commands for control.
With the proposed motion classification framework, it is expected
that classification performance can be enhanced so that motion
commands can be more robust and reliable. Experiments have
been conducted with four subjects to demonstrate the feasibility of
the proposed methods. In these experiments, forearm motions are
classified with EMG signals considering a cooking task. Finally,
robot manipulation experiments were carried out to verify the
proposed human interface system with a task of taking meal. The
experimental results indicate that the proposed methods improved
the robustness and stability of motion classification.

Index Terms—Bayesian network (BN), electromyogram (EMG)
signal, human–robot interfaces, motion classification, motion
prediction.

I. INTRODUCTION

E LECTROMYOGRAM (EMG) signals, which are mea-
sured at the skin surface, are the electrical manifestations

of the activity of muscles. It provides an important access to the
human neuromuscular system. EMG has been well recognized
as an effective tool to generate control commands for prosthetic
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devices and human-assisting manipulators. Up to the present,
a number of EMG-based human interfaces have been proposed
as a means for elderly people and the disabled to control pow-
ered prosthetic limbs, wheelchairs, teleoperated robots, and so
on [1]–[5].

The core part of these human–robot interfaces is a pattern-
classification process, where motions or intentions of motions
are classified according to features extracted from EMG sig-
nals. Commands for device control are then generated from the
classified motions. A variety of methods has been applied to
motion classification. For example, Graupe et al. used an au-
toregressive (AR) model to represent EMG signal, and motions
were determined based on the parameters of the AR model [1].
Kang et al. applied a Bayesian classifier for motion classifica-
tion [6]. Probability is calculated based on cepstral coefficients
of EMG signals, and the motion with the maximum probabil-
ity is selected. In recent years, artificial neural networks (NNs)
have been receiving increasing attention, and many approaches
have appeared in the field of EMG pattern classification using
multilayer perceptrons NNs [7]–[10], fuzzy NNs [11], [12], and
probabilistic NNs [4], [13]. Various attempts have been carried
out to improve the accuracy of EMG pattern classification using
novel EMG features (or called as signal representations), such
raw EMG signals and wavelet coefficients.

The performance of a human interface is largely limited by ac-
curacy of motion classification. It must be noted that EMG is an
exceedingly complicated and nonstationary signal. The feature
patterns vary significantly depending on tasks and conditions
of users. In addition, EMG signals are very likely affected by
artifacts and noises. With regard to practical applications, it is
still difficult to achieve sufficient accuracy and stable perfor-
mance of motion classification only based on EMG signals. It
requires many conscious efforts on the part of a user to operate
a prosthetic device or a human-assisting manipulator.

In order to overcome these problems, Tsuji et al. introduced
an entropy-based decision rule to reduce misclassification [9].
Entropy of a classifier’s outputs gives a measurement of the
amount of uncertainty of classification results. When entropy
exceeds a predefined threshold, the motion decision rule sus-
pends the judgment. In addition to this method, Fukuda et al.
incorporated a task model into an EMG-based human interface
to improve the classification performance for unstable EMG
patterns [14]. This task model describes the sequences of mo-
tions in a task, including all possible motion transitions and
branches, using a Petri net (PN) [15]. The task model determines
a forthcoming motion according to the history of classification
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results. Outputs of a motion classifier, which are occurrence
probabilities of motions, are then modified by a set of weights
according to the PN task model. Thus, the probability of the
motion determined by the task model is enhanced, while the
other motions are depressed. However, the motion sequences
and the modification weights must be manually designed. It
is difficult to apply this method when we do not have enough
knowledge to describe clearly all possible motion sequences in
a task. Furthermore, the modification weights usually need to
be determined by trial and error.

On the other hand, prediction of a user’s future behavior based
on context information has been used to improve efficiency
and classification accuracy of human interfaces. For example,
Darragh et al. developed a predictive typing aid to accelerate text
entry [16]. This method predicts what a user is going to type from
previously entered text, and the prediction is generated from an
adaptively trained text model. In the speech recognition method
proposed by Yamaoka and Iida, prediction of the next utterance
is used to reduce ambiguity of candidates in classification [17].
It is also suggested that prediction of candidates in mathematical
character classification can largely increase the accuracy [18]. In
these researches, prediction is based on the idea that users repeat
similar behavior under certain conditions, and the characteris-
tics of tasks can be represented with a task model. Prediction of
a user’s intention, goals, preferences, and forthcoming actions,
especially in cases of human interfaces, provides a high poten-
tial to reduce the number of candidates, assign high priority to
some candidates, or re-rank the candidates concerned in classi-
fication. Such information can significantly ease the difficulty
of pattern classification and virtually improve the classification
accuracy.

This paper proposes a predictive task model using Bayesian
network (BN) for motion prediction in order to improve ro-
bustness and reliability of EMG-based motion classification.
BN [19] is one of the popular techniques for user modeling and
predicting [20]–[22]. For example, Albrecht et al. applied BNs
to predict a user’s next action, location, and quest in a multiuser
dungeon (MUD) game [23]. BNs have also been used to model
and predict human driving behaviors [24]. The advantage of BN
lies in the following reasons: 1) Probabilistic expression in BNs
is effective in dealing with uncertainty that is concerned with
reasoning human behavior; 2) directed arcs between nodes give
an intuitive and explicit representation of causal relationships,
and the network structure can be devised by hand or learned
from data; 3) the parameters, i.e., the conditional probability
tables (CPTs), can be extracted from a database, and can be up-
dated whenever new samples are available. In this paper, BN is
utilized for modeling dependent relationships between two con-
secutive motions. Unlike the PN used in [14], we do not need
to predefine detailed sequences of motions in the task model,
but extract the conditional probabilities of motions from case
data directly. Given context information of the previous mo-
tion, the task model predicts occurrence probabilities for each
motion.

With the proposed task model, we further develop a hybrid
motion classification framework for EMG-based human–robot
interfaces. In this paper, we consider controlling a prosthetic

hand with the motion commands classified from forearm EMG
signals. Parallel to the motion prediction part using BN, a prob-
abilistic NN is adopted for EMG pattern classification. We use a
product rule [25] to combine the probabilities for the candidate
motions, which are obtained from both the BN task model and
the NN classifier.

The rest of this paper is organized as follows. Section II
introduces the proposed BN task model. A hybrid motion clas-
sification framework for EMG-based human–robot interfaces is
explained in Section III. Then, motion classification and robot
manipulation experiments are presented in Sections IV and V.
Finally, conclusions are given in Section VI.

II. TASK MODEL USING BN

A. Bayesian Network

A BN [19] is a graphical notation that encodes conditional
dependence relationships among a set of events. It is a directed
acyclic graph where the nodes are probability variables rep-
resenting certain events. Generally, a BN can be defined as
G = (V,A,P), where V = {V1 , V2 , . . . , VN } is a set of nodes
(variables), A is an assembly of directed arcs between the nodes,
and P is a set of CPTs that are associated with each node. A
directed arc from Vi to Vj , (Vi, Vj ) ∈ A, represents the condi-
tional dependency between the variables, and this dependency
is indicated with P (Vj = a|Vi = b), which is the conditional
probability for Vj = a given that Vi = b.

B. BN Task Model for Motion Prediction

We assume that a task consists of a series of motions, m(s)
(s = 1, 2, . . . , S), where m(s) represents the motion of the sth
step. At each step, only one motion occurs. A set of M motions
is considered in the task model m(s) ∈ {1, . . . , m, . . . , M}.

During a task, motion transition takes place between two
consecutive steps, say from m(s− 1) to m(s). The transition
illustrates dependence between the motions. On the other hand,
the motion at the sth step is related to one or more statuses
of the motion at the s− 1th step. For example, the location,
where m(s− 1) is achieved, is one of these cues to predict
m(s).

In this paper, a BN, as shown in Fig. 1, is used to model
the dependent relationships among four variables: mc , mp , lp ,
and hp . Here, mc is the motion at the current step, mp is the
motion for the previous step, lp indicates the location of motion
mp , and hp represents user’s hand position at the previous step.
P (mp) and P (hp) are probability of motion and hand positon
at the previous step, respectively. P (lp |hp) represents the con-
ditional probability of location at the previous step given the
previous hand position, and P (mc |mp, lp) is the conditional
probability of the current motion with respect to motion and
location information at the previous step. There are N loca-
tions defined in the workspace lp ∈ {l1 , . . . , ln , . . . , lN }. These
locations are positions of the items used in the task and possi-
ble places, where users are expected to achieve some particular
motions.
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Fig. 1. Task model for motion prediction using a BN.

Fig. 2. Locations and the user’s hand position in the workspace. Location of
motion is determined according to coordinates of hand position.

There are three discrete nodes (mc , mp , and lp ) and one
continuous node (hp ) in this BN. The conditional probabili-
ties P (mc |mp, lp) can be estimated by counting the number of
samples in a database. For example

P (mc = m′|mp = m, lp = ln )

=
P (mc = m′,mp = m, lp = ln )

P (mp = m, lp = ln )

� N(mc = m′,mp = m, lp = ln )
N(mp = m, lp = ln )

(1)

where N(mc = m′,mp = m, lp = ln ) denotes the number of
samples in the database, which are mc = m′, mp = m, and
lp = ln . N(mp = m, lp = ln ) is the number of samples for
mp = m and lp = ln . Frequencies of motion transitions as well
as dependencies between motions and locations vary among
individuals. A task model can be further adapted to a user by
extract statistical information from databases of his task records.

On the other hand, P (lp |hp) is a continuous probability distri-
bution. According to Bayes’ law, P (lp = ln |hp) can be derived
as

P (lp = ln |hp) =
P (lp = ln , hp)

P (hp)

=
P (hp |lp = ln )P (lp = ln )∑lN

lp = l1
P (hp |lp)P (lp)

(2)

where P (hp |lp) is the conditional probability of hp at the loca-
tion lp . The location lp is dependent on the coordinates of hp

(see Fig. 2). Suppose that P (hp |lp = ln ) follows a 2-D normal
distribution with the center at location ln , which has the coordi-

nates as (xn , yn ) and standard deviations as σxn and σyn . Thus,
with the coordinates of hp , we have

P (hp |lp = ln )

=
1

2πσxnσyn
exp

{
−1

2

[
(x − xn )2

σ2
xn

+
(y − yn )2

σ2
yn

]}
. (3)

Also, given that P (lp) is a uniform distribution, (2) can be
simplified as

P (lp = ln |hp) =
P (hp |lp = ln )∑lN

lp = l1
P (hp |lp)

. (4)

When context information of the previous motion step is
added to the task model, belief updating is performed to give
the probability of the user’s forthcoming motion for prediction.

III. HYBRID EMG-BASED HUMAN-ROBOT INTERFACE WITH

MOTION PREDICTION

A human–robot interface controlled with EMG signals is de-
veloped based on motion prediction using the BN task model.
EMG signals measured from a user’s forearm are classified in
order to estimate his/her (intended) motions. The motions are
then used as commands to control a prosthetic hand. The pros-
thetic hand can be directly attached to an amputee’s body. The
structure of this human–robot interface is shown in Fig. 3. This
system consists of three major parts: 1) EMG pattern classifica-
tion; 2) motion prediction; and 3) motion decision.

A. EMG Pattern Classification

First, EMG signals are processed to extract the feature pat-
terns for classification. The EMG signals, which are measured
from D pairs of electrodes, are rectified and filtered by a second-
order Butterworth filter (cutoff frequency fc ). They are then
digitized by an A/D converter with a sampling frequency of fs .
The sampled data are defined as EMGd(t) (d = 1, 2, . . . , D)
and are normalized to make the sum of D channels equal to 1.0.
We have

xd(t) =
EMGd(t) − EMGst

d∑D
d ′=1(EMGd ′(t) − EMGst

d ′ )
(5)

where EMGst
d is the mean value of EMGd(t) that is measured

while the arm is relaxed. The feature vector x(t) = [x1(t),
x2(t), . . . , xD (t)] is used for pattern classification.

A probabilistic NN, which is called log-linearized Gaussian
mixture network (LLGMN) [26], is used as the classifier. LL-
GMN is a three-layer feedforward NN. The structure of LL-
GMN is based on the Gaussian mixture model (GMM) and a
log-linear model, and this NN is able to estimate probability
density functions (pdfs) of input patterns. When used for pat-
tern classification, LLGMN possesses an inherent advantage of
achieving statistical classification using Bayes’ decision rule
and shows a good generalization ability. So far, LLGMN has
been successfully applied to EMG pattern classification even in
cases of amputee users [4], [14], [27]–[30].
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Fig. 3. Hybrid structure of an EMG-based human–robot interface, where the BN task model is incorporated for motion prediction.

Given an EMG feature vector x(t) (t = 1, . . . , T ), the output
of LLGMN Om (t) (m = 1, 2, . . . ,M) represents the posterior
probabilities of motion m. Then, the posterior probability vec-
tor O(t) = [O1(t), O2(t), . . . , OM (t)] is fed into the motion
decision part.

In this study, we assume that the amplitude level of EMG
signals changes in proportion to the muscle force. The force
information FEMG(t) for the input vector x(t) is defined as

FEMG(t) =
1
D

D∑
d=1

EMGd(t) − EMGst
d

EMGmax
d − EMGst

d

(6)

where EMGmax
d is the mean value of EMGd(t) that is measured

while maintaining the maximum voluntary contraction of the
arm. The force information is used to determine the onset and
end of motions in the motion decision part.

B. Motion Prediction

The task model described in Section II is used for motion
prediction. The motion and the hand position of a user are added
to the task model as evidence. The motion of the previous step
m(s− 1) is obtained from the results of the motion decision
part. The hand position h(s− 1) is measured with a position
sensor, which is attached on the user’s wrist.

With the notation in Section II, the belief about the current
motion, which is the conditional probability P (mc |mp, hp), can
be calculated as follows:

P (mc |mp, hp) =
∑

l P (mc |mp, l)P (l|hp)∑
m

∑
l ′ P (m|mp, l′)P (l′|hp)

. (7)

For the first motion step, the belief for motion prediction
Bm (1) (m = 1, 2, . . . ,M) is set as 1/M . As for the sth step
(s > 1), given that the context information of the s− 1th step is
m(s− 1) and h(s− 1), Bm (s) is calculated for each motion as

Bm (s) = P (m(s)|m(s− 1), h(s− 1)). (8)

After the belief propagation, the belief vector B(s) = [B1(s),
B2(s), . . . , BM (s)] is output to the motion decision part.

C. Motion Decision

In order to recognize whether a motion has really occurred
or not, the force information FEMG(t) is compared with a pre-

defined motion appearance threshold Fth . The motion is con-
sidered to have occurred if FEMG(t) exceeds Fth . Thus, the
duration of the sth motion step is the period [tsON, tsOFF]

FEMG(t) ≥ Fth , t ∈ [tsON, tsOFF] (9)

where tsON stands for the onset of the sth motion, and tsOFF is the
end of the motion.

In the area of pattern classification, combining classifiers has
been widely discussed, and various applications have utilized
this scheme to improve efficiency and accuracy of classifica-
tion [25], [31]. In this paper, the probabilities, which are outputs
of LLGMN and the BN task model, are combined for motion
decision. Since outputs of the BN task model are predictions
based on the previous motion, rather than classification results
based on a substantial event that resulted from the current mo-
tion. We set the outputs from LLGMN, i.e., the EMG pattern
classification part, as the major part in the combination.

During the sth motion, a product rule is applied to obtain the
probability of motion Pm (t) (m = 1, . . . ,M) as follows:

Pm (t) =
wm (t)Om (t)∑M

m ′=1 wm ′(t)Om ′(t)
, tsON ≤ t ≤ tsOFF (10)

where the weight wm (t) is defined as

wm (t) = α

(
Bm (s) − 1

2

)
+

1
2
, 0 ≤ α ≤ 1. (11)

Here, the interval of Bm (s) [0, 1] is transformed to [(1 −
α)/2, (1 + α)/2]. This transformation is conducted in order to
prevent misclassification due to Bm (s) = 0 for some motions.
It should be noted that the parameter α determines the influence
of motion prediction in the combination. The larger the param-
eter α is, the greater is the influence. The parameter α should be
defined previously, and it can be adjusted according to a user’s
preference.

Moreover, the entropy of Pm (t) is calculated in order to
prevent misclassification. The entropy is defined as

H(t) = −
M∑

m=1

Pm (t) log Pm (t). (12)

If the entropy H(t) is less than the threshold Hd , the motion
with the largest probability is determined as the user’s intended
motion M(t) according to Bayes’ decision rule. Otherwise, the
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Fig. 4. Locations and items of the cooking task. l1 : Ingredients, l2 : a fry pan,
and l4 : salt.

determination is suspended. Finally, M(t) is used as control
commands for the prosthetic hand.

IV. MOTION CLASSIFICATION EXPERIMENTS

Motion classification experiments were carried out in order
to evaluate classification performance of the proposed method.
Four male subjects voluntarily took part in these experiments.
Subjects C and D had not participated in EMG classification
experiments before. For comparison, the motion classification
method utilized in [4] was used, which makes decisions only
based on the outputs of LLGMN. The entropy-based decision
rule was used in this comparison method. For the sake of sim-
plicity, the comparison method is represented as LLGMN in the
rest of this paper.

A. Experimental Conditions

In the experiments, EMG signals were measured from five
pairs (D = 5) of electrodes (NT-511G: NIHON KOHDEN Cor-
poration). The electrodes were attached to user’s forearm and
upper arm: flexor carpi radialis (FCR), extensor carpi ulnaris
(ECU), flexor carpi ulnaris (FCU), and biceps brachii (BB). Two
pairs of electrodes were attached on the FCR and one pair on
each of the others. The differential EMG signals were amplified
by a telemetry system (MT11, NEC Medical Systems Corpora-
tion). The cutoff frequency of the Butterworth filter was 1 Hz,
and the EMG signals were recorded at a sampling frequency
of 1 kHz. Additionally, a 3-D position sensor (ISOTRACK II:
POLHEMUS, Inc.) was used to measure the hand positions in
the workspace.

A cooking task is used for test in these experiments. This
task consists of four operations: 1) Turn on a gas ring; 2) put
an ingredient in a fry pan; 3) add some salt to the ingredient;
and 4) shake the fry pan. Six motions are considered in this task
(M = 6: hand open, hand grasp, flexion, extension, pronation,
and supination). We defined six locations in the workspace (N =
6), as shown in Fig. 4. Three items are used in this task, i.e.,
ingredients (l1), a fry pan (l2), and salt (l4). A typical order of
the motion series and location transitions in the cooking task is
depicted in Table I.

Each subject performed 15 trials on the task. Data of the first
five trials were used to train LLGMN and the BN task model,
while the other trials were used for test. The training trials
were performed with the order of operations as (1)–(2)–(3)–(4).
The test trials were further divided equally into two groups:

TABLE I
TYPICAL ORDER OF THE MOTION SERIES AND LOCATION TRANSITIONS IN THE

COOKING TASK

Group I—the operation order is the same as the training trials
and group II—the operation order is (1)–(3)–(2)–(4). Table II
depicts the CPT P (mc |mp, lp) of subject A extracted from the
training data. According to the previous researches on EMG
motion classification [9], [10], [13], [27]–[30], Fth was set at
0.2 and Hd at 0.3. The parameter α was set at 0.8 with respect
to a preliminary examination on change of classification rate for
various values of α (see Section IV-D).

B. Motion Classification Results

An example of the experimental results of subject A is shown
in Fig. 5. The operation order of this test trial is (1)–(2)–(3)–
(4). This figure plots the five channels of EMG signals, force
information FEMG(t), outputs of the BN task model Bm (s), the
classification results of LLGMN, and the results of the proposed
method. The gray areas indicate that no motion was achieved
because FEMG(t) was less than Fth . Motions with label of
“0” represent decision suspension due to a high entropy, and
no motion command would be generated by the interface. The
classification rates of LLGMN and the proposed method are
85.1% and 92.9%, respectively.

From the results of LLGMN, it can be found that most of
the misclassifications occur at beginnings and ends of motion
steps. These are chiefly due to the variation in EMG patterns
during the transitional phases of motions. In contrast to the
method that is only based on LLGMN, classification accuracy
of the proposed method is substantially improved, and the re-
sults are much more stable during each motion step. Since the
BN task model gives higher belief to the motions, which are
predicted to appear at the current step, most of the misclas-
sifications made by LLGMN are corrected by combining the
output of LLGMN with the belief vector B(s). For example,
at about 15 and 23 s, EMG patterns of motion 2 are incor-
rectly classified as motion 5 by LLGMN. With the proposed
method, the belief of motion 2 (B2) is higher than other mo-
tions during these motion steps so that the misclassifications are
prevented.

Accuracy of the classification results for four subjects was
investigated as well. Motion classification experiments were
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TABLE II
CPT, P (mc |mp , lp ), OF SUBJECT A FOR THE COOKING TASK

Fig. 5. Example of continuous classification results of the cooking task (sub-
ject A). The labels of classification results are as follows: 0—Decision suspen-
sion, 1—hand open, 2—hand grasp, 3—flexion, 4—extension, 5—pronation,
and 6—supination.

conducted using all test trials. Figs. 6 and 7 show the mean values
and standard deviations of classification rates for trials from test
group I and group II, respectively. In both cases, the proposed
method outperforms the comparison method. For test trails of
group II, although the operation order is different from that
of the training trials, improvements of classification results are
confirmed for all subjects. Since the BN task model represents

Fig. 6. Classification results of trails from test group I.

Fig. 7. Classification results of trails from test group II.

dependencies among variables of two consecutive motion steps,
the proposed method is expected to provide high flexibility when
dealing with practical motion series.

C. Increase of Classification Rates

The increase of classification rates is computed for each test
trial. We define the increase ∆CR as

∆CR = CR − CR′ (13)

where CR is the classification rate of the proposed method and
CR′ is that of LLGMN. A summary of the increase of classifi-
cation rate is listed in Table III. As demonstrated by the results,
increase of classification rate has been achieved by the proposed
method.

Furthermore, it can be found that ∆CRs of subjects C and D
are larger than those of A and B. Thus, an increase ratio (IR) is
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TABLE III
SUMMARY OF THE INCREASE OF CLASSIFICATION RATE (IN PERCENTAGE)

Fig. 8. IR versus classification rate of LLGMN (CR′).

evaluated as

IR =
∆CR
CR′ . (14)

The IRs versus CR′s for ten trials of each subject are plotted in
Fig. 8. Generally, there is an increase in classification rate when
CR′ decreases. If LLGMN makes a correct classification based
on the EMG signals, the context information and characteristics
of tasks, such as the transition between motions and information
of locations, do not make much sense. When LLGMN fails,
however, the motion prediction made by the BN task model
helps a lot in the motion decision. This may be an encouraging
result for users, like subjects C and D, who have not much
experience in control with EMG-based human interfaces.

D. Influence of BN on Classification Results

Motion classification experiments were conducted using var-
ious values of parameter α. It was set as 0.0, 0.2, 0.4, 0.6, 0.8,
and 1.0, respectively. For each subject, five trials of test data
were classified. Mean values of the classification rates for each
α are shown in Fig. 9. It can be found that the classification rate
rises when α increases, especially for subjects C and D. In the
case of α = 0.0, the classification results are only based on LL-
GMN. By increasing the influence of BN, better classification
performance is available. Remember that for the combination of
the neural classifier (LLGMN) and the motion prediction model
(BN), we set the former as the major part. The parameter α is
set as 0.8 in this study.

V. ROBOT MANIPULATION EXPERIMENTS

The simulation experiments in the previous section demon-
strate the feasibility and effectiveness of the proposed method.
This section introduces robot manipulation experiments con-
ducted using the proposed EMG-based human–robot interface.

Fig. 9. Classification results for various values of parameter α.

Fig. 10. Workspace of the task of taking meal. A robotic manipulator is set
on the left side. The items in the workspace are a disk and a spoon (l2 ), a glass
(l3 ), and a bottle of water (l6 ).

Fig. 11. Sample session of experimental results of a manipulation trial (task
of taking meal; subject A). The labels of classification results are as follows: 0—
Decision suspension (no motion command is generated for the manipulator),
1—hand open, 2—hand grasp, 3—flexion, 4—extension, 5—pronation, and
6—supination.
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Fig. 12. Scenes of the robot manipulation experiments (subject A). (a) t = 0.0 s. (b) t = 5.2 s. (c) t = 14.2 s. (d) t = 30.0 s. (e) t = 39.2 s. (f) t = 48.3 s.
(g) t = 55.0 s. (h) t = 62.3 s.

The subjects were instructed to perform a taking meal task,
which includes three operations: 1) Pour some water into a glass;
2) drink water; and 3) eat soup with a spoon. The schematic view
of the workspace is presented in Fig. 10.

A robotic manipulator is set on the left of the workspace.
The robotic manipulator consists of a prosthetic hand (Imasen
Laboratory) and a robot arm (Mitsubishi Electric Corporation).
Motion of the prosthetic hand is controlled with the commands
M(t), which are generated by the motion decision part. The
prosthetic hand can achieve six different motions corresponding
to the six forearm motions of users. The robot arm supports the
prosthetic hand and transports it to positions in the workspace
according to a user’s hand position. The prosthetic hand is de-
tachable from the robot arm, and an amputee can attach it to
his/her body to replace the amputated arm. This robotic manip-
ulator was developed by Fukuda et al. [28], [30], and it has been
used in previous research. For details, see [4] and [14].

The experimental conditions of EMG measurement and posi-
tion sensing are as the same as those in Section IV. The param-
eters for motion decision are as follows: Fth = 0.22, Hd = 0.3,
and α = 0.8.

Fig. 11 shows a sample session of experimental results
of a manipulation trial (subject A). In the first motion step
(around 6 s), misclassification can be found for both methods.
It should be noted, however, that no context information is
available for the first step; therefore, the classification results
of both methods are the same. For later motion steps, the
proposed method corrected most of the misclassification of the
comparison method. With the proposed method, the subject
achieved the task successfully. The classification rate of the
proposed method is 86.4%, with an increase of 17% from the
result of LLGMN. Some scenes of the robot manipulation
experiments are shown in Fig. 12.

VI. CONCLUSION

In this paper, we have proposed a new task model based on
BNs and applied it to an EMG-based human–robot interface

system as an assist to support motion classification. Since BNs
extract the statistical dependency between two continuous mo-
tions, the task model outputs the conditional probabilities as
belief for motion prediction according to context information.
The belief then can be easily combined with output of a prob-
abilistic NN classifier to improve stability and accuracy of mo-
tion decision. Additionally, the probabilistic parameters in the
task model are obtained by training with a database, and online
learning methods [32], [33] are possible to keep adaptability for
a user. Finally, experiments of EMG motion classification and
robot manipulation have proved the feasibility and effectiveness
of the proposed method.

On the other hand, it is still quite difficult for the proposed
task model to provide a precise prediction, especially consider-
ing uncertainty in human behavior. There are many researches
working on improving the accuracy of BN-based human mod-
eling. This is out of the range of the present paper. Here, we use
a weak predictor, i.e., a BN with simple structure, as a subpart
in the proposed hybrid motion classification framework. The
BN part does not directly give an answer but gives a suggestion
for motion decision based on the characteristics of task flows,
user’s operation process, and his preference so that a much more
robust and reliable classification result can be obtained.

In this paper, the structure of the BN task model is manually
designed; it is not learned from a database. Actually, the task
model shown in Fig. 1 is not the only form that can be used in
this study. Motion, location, and hand position of the previous
motion step are only a small part of the status related to a
user’s operation. Alternative designs of the BN task model are
possible, using context information like user’s posture, duration
of a motion, and other related features.

In our future research, we would like to increase the num-
ber of subjects in the experiments, and a statistical analysis
of experimental results is needed to investigate the proposed
method. On the other hand, in order to demonstrate the validity
of the proposed method for disabled users, we would like to
conduct evaluation experiments with amputee subjects. Also,
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we will focus on the improvement of the proposed method. For
example, the combination rule used in this paper would be en-
hanced. Moreover, in order to deal with human–robot interface
applications in daily life, extension of the BN task model is
needed. For this purpose, hierarchical structure of BN task mod-
els and combining of the proposed task model with PN is another
interesting prospect.
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