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This paper proposes a novel phoneme classification method using facial electromyo-
graphy (EMG) signals. This method makes use of differential EMG signals between
muscles for phoneme classification, which enables a speech synthesizer to be constructed
using fewer electrodes. The EMG signal is derived as a differential between monopo-
lar electrodes attached to two different muscles, unlike conventional methods in which
the EMG signal is derived as a differential between bipolar electrodes attached to the
same muscle. Frequency-based feature patterns are then extracted using a filter bank,
and the phonemes are classified using a probabilistic neural network, called a reduced-
dimensional log-linearized Gaussian mixture network (RD-LLGMN). Since RD-LLGMN
merges feature extraction and pattern classification processes into a single network struc-
ture, a lower-dimensional feature set that is consistent with classification purposes can
be extracted; consequently, classification performance can be improved. Experimental
results indicate that the proposed method with a fewer number of electrodes can achieve
a considerably high classification accuracy.

Keywords: Facial EMG signals; speech recognition; probabilistic neural networks.

1. Introduction

As a side effect of laryngectomy or tracheostomy, patients sometimes suffer from a
loss of phonation function. The rehabilitation of speech and voice is an important
challenge to these patients since communication is a critical issue related to their
medical care and social interactions. A number of voice rehabilitation methods have
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been investigated over the years, and some artificial larynges and speaking valves
have become commercially available.!? However, these methods still have some
disadvantages such as poor sound quality, the need of frequent maintenance, and
inconvenience of use (especially in daily life).2”*

Many researchers have reported that the electromyography (EMG) signals from
the body’s facial and cervical muscles can be used for speech recognition.’ 16 To
our knowledge, Sugie and Tsunoda® proposed the first EMG-based speech recog-
nition system, in which three channels of EMG signals from the muscles around
the mouth were used to discriminate five Japanese vowels with an automaton.
Further, the prototype of a real-time speech synthesizer was constructed as a
speech prosthesis for patients who have lost their phonation capabilities. Although
the average classification rate achieved was 64%, it was proved that the EMG
signals obtained from the facial muscles contain information useful for speech
recognition.

Recently, significant improvements have been achieved in the EMG-based speech
recognition. Chan et al. reported an improved classification performance for a 10-
word vocabulary using five channels of EMG signals measured with 10 electrodes.5:”
This method was further enhanced by combining recognition results based on
acoustic and EMG signals with a multiexpert system.® In Ref. 9, five Japanese
vowels were recognized using three EMG channels (six electrodes), and the clas-
sification accuracy exceeded 90% for all the subjects. Kumar et al.!’ employed a
back-propagation neural network (NN) to classify five English vowels using three
EMG channels (six electrodes), an average classification accuracy of 88% was
reported. Further, Maier-Hein et al.!! confirmed an average classification accuracy
of 97.3% for ten English digits using seven EMG channels (14 electrodes). Based
on the method of Maier-Hein et al., investigations involving large vocabularies were
conducted.!?-13

In particular, Fukuda et al. proposed an EMG-based speech synthesizer sys-
tem in which six Japanese phonemes (five vowels, namely, /a/, /t/, /u/, /e/, o/,
and one nasal /n/) are classified from five EMG channels (10 electrodes) using a
probabilistic NN; then, words are recognized from the series of phonemes using
algorithms of the hidden Markov model (HMM).!* Due to the probabilistic NN
and HMM algorithm, this system provides high-accuracy phoneme classification
and word recognition, and it is robust against issues such as the differences among
individuals and variations in temporal characteristics.

However, these studies used the differential EMG signals obtained from bipolar
electrodes; consequently, the number of electrodes was fairly large. This is unde-
sirable in practical applications and from the viewpoint of being less noticeable.
Jorgensen et al.'> developed a system using two pairs of electrodes, and the authors
indicated that as few as one electrode pair located diagonally between the cleft of
the chin and the larynx would suffice for recognizing a small vocabulary.'® However,
since the cervical muscles around the larynx are used, these methods may not be
applicable for patients after laryngectomy or tracheostomy.
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Fig. 1. Electrode configurations: (a) differential EMG signals measured from the same muscles
(bipolar), (b) differential EMG signal measured from two muscles (monopolar).

In order to achieve acceptable classification accuracy by using fewer electrodes,
one is required to conform to the following criteria:

(1) sufficient feature characteristics should be extracted for speech recognition while
reducing the number of electrodes, and
(2) an effective pattern classification tool needs to be provided.

To tackle these problems, the present paper proposes a novel method for EMG-
based speech recognition. This method consists of an EMG acquisition method
based on differential EMG signals between muscles and a classifier using a prob-
abilistic NN. Unlike conventional bipolar recording configurations, the electrodes
are attached to different muscles, one electrode for each muscle. Subsequently, dif-
ferential signals between every two electrodes can be derived as input channels for
classification (see Fig. 1).1” This method can reduce the number of electrodes.'8 In
order to acquire sufficient feature characteristics from the reduced EMG sources,
the frequency content of each channel is extracted using a filter bank.

The dimensionality of the feature space should grow with an increasing
frequency resolution. The proposed method incorporates a novel probabilistic
NN, called a reduced-dimensional log-linearized Gaussian mixture network (RD-
LLGMN),! for the classification of high-dimensional EMG patterns. Two basic
concepts of this probabilistic NN are (1) an orthogonal transformation that projects
the original input space into a lower-dimensional space and (2) the Gaussian mix-
ture model (GMM) that estimates the probability distribution of patterns in the
projected lower-dimensional space. This network combines the feature extraction
process with the classification part, and is trained in the manner of minimum clas-
sification error (MCE) learning,?° which enables the classification part to realize
a low error probability. The proposed EMG-based speech recognition method is
expected to extract discriminative information from frequency-based EMG pat-
terns and enable an efficient classification of phonemes using fewer electrodes.

This paper is organized as follows. Section 2 explains the details of the pro-
posed method. In Sec. 3, the performance of the proposed method is evaluated
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with experimental results of healthy subjects and a laryngectomized patient. Com-
parison experiments are then presented in Sec. 4. Finally, Sec. 5 concludes this

paper.

2. Methods
2.1. EMG signal acquisition and feature extraction

By using a monopolar configuration, the EMG signals are measured as shown in
Fig. 1(b). The differential between the electrodes is obtained, with which it is con-
sidered that characteristics of both muscles under the electrodes are represented. In
the proposed method, S Ag/AgCl electrodes are attached to the facial muscles; one
electrode is attached to one muscle. The EMG signals are recorded at a sampling
frequency of 1kHz. The difference between the potentials of every two electrodes
is computed; as a result, there are S(S — 1)/2 channels of EMG signals available.
L channels of EMG signals (L < S(S—1)/2) are then fed into the feature extraction
process.

Since the differential is derived from the electrodes attached to different muscles,
spatial information may be partially lost. In order to compensate for this, a bank
of Z band-pass filters (BPF;,i = 0,...,Z — 1) is applied to L EMG channels to
extract frequency content. The bandwidth of the ¢th filter is set as follows:

BPF; : 20 + o7 [Hz] ~ 20+ o (¢ + 1) [Hz], (1)

where ¢ = U/Z. U indicates the frequency range under consideration, and is set
as 250 Hz in this study. After the filter-bank stage, the number of input channels,
denoted as d, becomes L x Z, and the raw EMG signals of each channel are rectified
and filtered by a low-pass filter (cut-off frequency: 1 Hz). The filtered EMG signals
are defined as EMG;(¢) (i = 1,...,d), and normalized to make the sum of d channels
equal to 1.
——=st
wi(t) = W) EMG ), @)
> i1 EMG;(t) — EMG;

where EMG, ' is the mean value of EMG;(t), which is measured when the muscles
are relaxing. Then, the normalized patterns, x(t) = [z1(t), z2(t),...,z4(t)]T, are
used as the input features for phoneme classification.

In the proposed method, we assumed that the amplitude level of the EMG
signals changes in proportion to the muscle force. The power level is defined as

1 <~ MEMG,(t) - MEMG.'
FEMG(t) D p——

S = MEMG™>* — MEMG.,
where MEMG;(¢) indicates the filtered signal (cut-off frequency: 1 Hz) of rectified

raw EMG directly measured from the electrode s (s = 1,...,95), MEMGzt is the
mean value of MEMG(t), which is measured when the muscles are relaxing, and

®3)



A Speech Synthesizer Using Facial EMG Signals 5

oo,

Fig. 2. Structure of RD-LLGMN.

MEMGI® is the mean value of MEMG;(¢t) measured under the maximum volun-
tary contraction (MVC). Fgmcg(t) indicates the force information, and it is used

to recognize whether the motion has really occurred or not by comparing Fryc(t)
with a predefined threshold M.

2.2. Phoneme classification

RD-LLGMN® is used for phoneme classification. It provides a novel approach for
feature reduction by finding the discriminant features of a reduced size and calcu-
lates the posterior probabilities for classification.

RD-LLGMN is a four-layer NN; its structure is shown in Fig. 2. Given an input
vector x € R¢, the first layer consists of d 4+ 1 units, where one unit has a bias
input of 1, and an identity function is used for the activation of each unit. Let
MWQO; (i =0,...,d) denote the output of the ith unit in the first layer, we have

(1)Oi _ 17 1 :07 (4)
zi, i=1,2,...,d,

where z; (i =1,2,...,d) is the element of x.

In the second layer, the unit {c, k,0}, (c=1,...,C;k =1,...,K.), is a bias unit,
and its output (2)02,,c = 1; the unit {c,k,m} (m =1,..., M, ) receives the output
of the first layer weighted by (I)WC"’}C, where C is the number of the classes under
consideration; K, the number of components of the Gaussian mixture distribution
in class ¢; and M, is the number of dimensions of component £ in class c. Input
@1m and output PO, for (m # 0), are defined as follows:

d
B =3 Mo mwr, (5)
i=1
mOka = ((2)1(7:71;)2- (6)

Through this layer, vector x € R¢ is projected into M, x-dimension spaces,
]\/[c,k <d.
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Fig. 3. Schematic view of the proposed speech synthesizer system.

The unit {c,k} in the third layer sums up the outputs of the second layer
weighted by the coefficients (Q)Wc’flk. The relationships between the input of unit
{e,k} in the third layer (P 1, x) and output (PO, k) are defined as

M,
O, = Z (2)0(7;},6(2);/[/!2’ (7)

)

exp[® 1. 1]

C K. .
et 2wy exp[P e k]

In this layer, RD-LLGMN calculates the posterior probability of each Gaussian
component using reduced-dimensional features.

The fourth layer consists of C units corresponding to the number of classes. Unit
¢ sums up outputs of the K. components {c, k} in the third layer. The function
between the input and the output is described as

(S)Oc k =

(8)

K.
(4)0C _ (4)1'C — Z (3)Oc,k~ 9)

k=1
Only after the weight coefficients are optimized using an MCE-based training algo-
rithm, the output of RD-LLGMN, 0., can estimate the posterior probability of

class c.

The entropy of the RD-LLGMN’s output is also calculated to prevent the risk

of misclassification. The entropy is defined as

c
H(t)y == ®D0.(t)log™ O,(t). (10)

c=1
If the entropy H(t) is less than a threshold Hyg, the specific motion with the largest
probability is determined according to the Bayes’ decision rule; otherwise, the deter-
mination of the motion is suspended.

2.3. Speech synthesizer

Based on the proposed method, a speech synthesizer system is constructed, as shown
in Fig. 3. According to the results of phoneme classification, words are recognized



A Speech Synthesizer Using Facial EMG Signals 7

(a) M. depressor labii inferioris
(b) M. zygomaticus major
(¢) M. masseter

Fig. 4. Location of the target muscles.

using the HMM-based method proposed by Fukuda et al.'* Finally, voice generation
is achieved using synthesizer software. In this system, the sound volume is controlled
according to the force information calculated from the EMG signals.

According to the previous studies, it is very difficult to recognize consonant only
from EMG signals.!* In the proposed system, five vowels, namely, /a/, /i/, /u/, ¢/,
/o/, and one nasal /n/ are classified, and all the consonants are classified as corre-
sponding vowels, for example, /ka/, /sa/, and /ta/ are classified as the vowel /a/.
Due to the fact that only six phonemes can be used, HMM?! is applied for Japanese
word recognition, which has been successfully developed especially in the field of
speech recognition. For word recognition, one HMM is prepared for each word, for
instance, /oaou/ for /ohayou/ and /aeu/ for /taberu/. When users utter /ohayou/,
the corresponding model /oaou/, which consists of the sequence of vowels belong-
ing to the word, is recognized. Further, the utterance lengths vary remarkably.
Since HMMs approximate the probabilistic characteristics of time series through
learning, stable recognition can be achieved for words with varying temporal
characteristics.

3. Evaluation

Japanese phoneme classification experiments were conducted to examine perfor-
mance of the proposed method. Five subjects (A-D: healthy, E: a laryngectomized
patient) participated in these experiments. The subjects were asked to utter six
phonemes (C' = 6) for approximately 30s in the order of /a/, /i/, /u/, /e/, /o/,
and /n/. From the 11 trials conducted, the training trial was randomly selected,
and the other 10 trials were used for testing purposes.

Ouly three Ag/AgCl electrodes (SEB120, GE Marquette Corp.) are attached to
the subject’s facial muscles (M. Depressor Labii Inferioris (PLI), M. Zygomaticus
Major (ZM), and M. Masster (MA); see Fig. 4). The differential between DLI and
ZM was used as input channel one, differential between DLI and MA as channel
two, and differential between ZM and MA as channel three. The number of band-
pass filters Z was six, therefore the dimension of the input features for RD-LLGMN
d was 18. The parameters of the GMM in RD-LLGMN were set as: C =6, K, =1
(¢=1,...,6). The dimensions of the reduced subspaces M. (c=1,...,C;k =1)
were set as M = 9. In the training phase, 50 EMG patterns were extracted from
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Fig. 5. Examples of the classification results (subject A) [(a): DLI, (b): ZM, (c): MA].

the EMG signals of each phoneme, and teacher signals consisted of C' x 50 patterns.
The determination thresholds were set as My = 0.08 and Hy = 0.5.

Figure 5 depicts an example of subject A’s classification results of the best
trial, which provides the best classification rates among all the test trials. In this
figure, three channels of the raw monopolar EMG signals, three channels of the
differential EMG signals, the force information Fgma(t), the entropy H(t), and the
classification results have been plotted. The gray areas indicate that no utterance
occurred because the force information Fgyg was less than My. Although misclas-
sification can be observed in the beginning of the utterance of /a/, and the begin-
ning and ending of the utterance of /n/, the classification result of RD-LLGMN
is relatively stable, and a high classification rate of 98.8% was realized in this
experiment.

Further, the phoneme classification experiments were conducted with a laryngec-
tomized patient (subject E). Figure 6 shows an example of the classification results
of the best test trial. Misclassification is found in the utterance of /o/ and the
beginning and ending of the utterance of /u/. In this experiment, the classification
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Fig. 6. Examples of the classification results (subject E) [(a): DLI, (b): ZM, (c): MA].

rate was 90.6%. As compared to the healthy subjects, the amplitude of the EMG
signals measured from the muscles is low. Since the patient eats soft meals every-
day, it is considered that the muscles around the jawbone, such as the muscle of
masseter, are degraded. Moreover, for each misclassified utterance, the entropy

is high. Misclassification could be reduced using an appropriately modulated
threshold H,.

4. Comparison Experiments

To verify the proposed method, comparison experiments were conducted. A neu-
ral classifier, log-linearized Gaussian mixture network (LLGMN),2? was applied for
phoneme classification. LLGMN is a probabilistic NN, which estimates the pos-
terior probability distribution of the input features based on a GMM and a log-
linear model. LLGMN has been used in the previous research.!* For the details
of LLGMN, please refer to the literature. In addition, a method based on fea-
ture extraction with LLGMN was utilized. A feature extraction process, principle
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component analysis (PCA),?* was used to reduce the dimensionality of the input
features. After the PCA process, LLGMN was applied for phoneme classification.
For simplicity, two methods used in the comparison experiments are referred to as
LLGMN and LLGMN with PCA hereafter.

4.1. Variation in classification performance with various
conditions

First, the phoneme classification results obtained using RD-LLGMN and LLGMN
with PCA under various conditions are presented here. x € R? defined in Eq. (2) was
used as the input signal. In the PCA part, the original features are projected into a
lower-dimensional space on directions that correspond to the M highest eigenvalues
of the covariance matrix.2? Feature vectors extracted with these M directions are
then fed into LLGMN.

LLGMN?? is a three-layer feedforward probabilistic NN based on GMM.
The number of units in the input layer of LLGMN was set equal to M. The
units in the hidden layer correspond to the Gaussian components in GMM, the
number of which was set as one. The output layer had six units, and each
unit outputs the corresponding posterior probability for the input pattern. The
same determination thresholds, My and H,, were used for the classification
based on LLGMN with PCA. LLGMN was trained with a maximum likelihood
learning.??

In the comparison experiments, the classification rates of two methods are eval-
uated by varying the dimensionality of input EMG features d and an extraction
rate (denoted as ), which is the ratio of M to d. The dimensionality of the input
EMG features d is changed by changing the number of filters Z from one to six. Five
sets of randomly selected initial weights were used to train each classifier. Figures 7
and 8 show the mean values and standard deviations of the classification results for
the best test trial (subject A) for different parameter combinations, namely,

B e [%%1} (d € [3,9,15]),
dx [ (11)
12345
B e [6’6’ 56’ 6,1} , (de[6,12,18]).

It should be noted that the directions of the axes of d and (3 are reversed in the
figures showing standard deviations for improving their clarity. From these figures, it
can be observed that RD-LLGMN achieved higher classification rates than LLGMN
with PCA. Since PCA and LLGMN are separately optimized based on different
training criteria, the extracted features may not always be consistent with the
purpose of classification, and their classification accuracy was poorer than that of
RD-LLGMN. Further, we can observe that when (3 increases, the classification rates
of the two methods increase slightly. This is due to the fact that more information
is used for pattern classification. However, computational complexity and time used
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Classification rate [%]
Standard deviation [%]

Fig. 7. Classification results using RD-LLGMN (subject A).

Classification rate [%]
Standard deviation [%]

Fig. 8. Classification results using LLGMN with PCA (subject A).

for training are significantly increased. On the other hand, when we increase d, a
similar trend can be observed for RD-LLGMN. In contrast, classification rates of
LLGMN with PCA method decrease for approximately 15%. When increasing d, the
entropy of LLGMN’s output increased. This implies that the classification became
more ambiguous; therefore, the classification results were suspended, resulting in a
decrease in the classification rates of LLGMN with PCA.

4.2. Comparison between methods using differential EMG signals
between muscles

Comparison experiments were then conducted with LLGMN, LLGMN with PCA,
and RD-LLGMN using differential EMG signals between muscles. For LLGMN,
three channels of differential EMG signals between the muscles were rectified and
filtered by a second-order Butterworth filter (cutoff frequency: 1 Hz). Note that the
number of electrodes used for EMG acquisition is three. The filtered EMG signals
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Table 1. Results of comparison between three methods using differential EMG
signals between the muscles. Only three electrodes were used for EMG acquisition.

Methods
LLGMN LLGMN with PCA RD-LLGMN
Subject A 68.6 + 8.0 65.6 6.5 84.0+8.9
Subject B 32.6 £ 8.5 372+ 4.4 72.3+74
Subject C 80.4 +9.3 72.0£6.9 83.7+7.9
Subject D 30.3+3.8 15.7 £ 2.9 60.6 + 6.1
Subject E 29.5 + 8.1 60.7 £ 7.7 80.4+8.9

Mean + S.D. [%)].

are defined as CEMG;(t) (I = 1,2,3) and are normalized to make the sum of the
three channels equal to 1.0:
CEMG;(t) — CEMG;'

z)(t) = ———  (1=1,2,3), (12)
N 3 CEMG(t) - CEMG)

where CEMG';t is the mean value of CEMG;(t) measured while the muscles are
relaxing. LLGMN used the feature vector x’ € ®3 as the input. In case of LLGMN
with PCA, the bank of six filters was applied to the three channels of differential
EMG signals in the same way as described in Sec. 2.1. Then, PCA was used to reduce
the dimensionality to nine. The number of units in the input layer of LLGMN was
equal to the dimension of the input vector.

For all the methods, five sets of randomly selected initial weights were used for
training. Ten test trials were conducted; in each test trial, the EMG signals were
measured for approximately 30 s (six phonemes). Table 1 shows the mean values
and standard deviations of the classification rates of the 10 test trials using the three
methods. The ranges of the classification rates (%) with the proposed method are
[65.9,98.8] (subject A), [55.9,86.1] (subject B), [59.8,96.5] (subject C), [51.3,76.0]
(subject D), and [60.6,90.6] (subject E). The examples shown in Figs. 5 and 6 are
the best classification results of subjects A and E. It is evident that the proposed
method outperformed the other methods.

5. Conclusion

This paper proposes a novel phoneme classification method for speech synthesizer
using facial EMG signals. This method uses differential EMG signals between mus-
cles, and classification can be achieved based on fewer electrodes. In order to
acquire sufficient feature characteristics from the reduced EMG sources, a filter
bank is used to extract the frequency information. Employing the probabilistic NN,
RD-LLGMN, discriminative information is extracted from frequency-based EMG
patterns with large dimensions, and efficient classification of phonemes is possi-
ble. To examine the discrimination accuracy of the proposed method, phoneme
classification experiments and comparison experiments using three electrodes for
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EMG measurements have been carried out with five subjects. In the experiments,
relatively high classification rates of the proposed method using a small number of
electrodes were confirmed. Furthermore, with the same number of electrodes, the
proposed method outperforms the other methods.

In this paper, RD-LLGMN is used for phoneme classification. For EMG-
based speech recognition, many researchers have applied NNs, such as multi-layer
perceptron (MLP) and radial-basis function (RBF) networks, for classification
purposes.?>19:1%:16 However, with these traditional neural classifiers, training pro-
cess becomes complicated when dealing with large-dimensional data. A large train-
ing dataset is always required to estimate the parameters in NNs. Usually, feature
extraction is conducted prior to a classification process in order to find a com-
pact feature set to avoid exhaustive computation. Unfortunately, the classification
schemes based on a feature extractor with a classifier suffer from some intrinsic lim-
itations: the feature extractor and the classifier are separately optimized; moreover,
they usually have different training criteria.!® In contrast, RD-LLGMN merges the
feature extraction and pattern classification processes into a single network struc-
ture, and the parameters are modulated with a criterion to minimize the error
probability. It is expected that RD-LLGMN would yield better classification per-
formance. In this paper, comparison results between the proposed method and
the LLGMN-based methods have been provided. A further investigation to com-
pare MLP- and RBF-based classification methods with the proposed method is
envisaged.

In the future research, we would like to improve the pre-processing method of
EMG signals, such as the modulation of the parameters of the filter banks and low-
pass filtering. Further, the locations of electrodes and the selection of monopolar
channels should be investigated. From Fig. 7, it can be observed that the standard
deviations of the proposed method are larger than those of LLGMN with PCA
when (3 is small. A detailed investigation is required to evaluate the stability of
the classification results of the proposed method. Further work would be needed to
compare the proposed method with other previously proposed EMG-based speech
recognition methods.
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