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Abstract

Impedance control is an effective control method for a manipulator that is in contact with its environment. Nevertheless, the
characteristics of force and motion control are determined by impedance parameters of the end-effector of the manipulator, which
must be designed according to the given task. This report presents a method that uses neural networks to regulate impedance
parameters of the manipulator’s end-effector while identifying environmental characteristics through on-line learning. Four kinds
of neural networks are used: three for the position, velocity and force control of the end-effector, and one for the identification of
environments. First, the neural networks for the position and velocity control are trained during free movements. Then, the neural
networks for the force control and identification of environments are trained during contact movements. Computer simulations
show that the method can regulate stiffness, viscosity and inertia parameters of the end-effector and identify unknown properties
of the environments through on-line learning.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction impedance parameters, i.e., inertia, viscosity, stiffness,
and the desired trajectory of the end-effector. However,
When a manipulator performs a task in contact with in general, it is extremely difficult to design them ac-
its environment, position and force control are required cording to the target task and the environmental condi-
because of constraints imposed by the environment. tions including nonlinear and time-varying factors.
The impedance control meth@t] is an effective con- Many studies have aimed at regulating the
trol approach for such contact tasks of the manipulator. impedance property and the desired trajectory of
This method can realize the desired dynamic proper- the end-effector by utilizing optimization techniques.
ties of the end-effector by regulating the mechanical Those methods can adapt the desired trajectory of the
end-effector according to the task, but there still re-
"~ Corresponding author. Tel.: +81 824247676 mains to be accounted for h(_)w to design the desired
fax: +81 824242387. impedance parameters. Besides, the methods cannot
E-mail addresstsuji@bsys.hiroshima-u.ac.jp (T. Tsuji). be applied into the contact task where the character-
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istics of its environment are nonlinear or unknown. end-point trajectory at the same time. Then, Xiao and
For this problem, some methods using neural networks Todo[7] developed a discrete-time impedance control
(NNs) have been proposed, which can regulate robot algorithm using NN for adapting robot impedance
impedance properties through the learning of NNs in parameters to the unknown contact environment in
consideration of the model uncertainties of manipulator on-line. Moreover, Venkataraman et ] proposed
dynamics and its environments. Most of such methods an on-line learning method using NN which can
using NNs assume that the desired impedance param+ealize the desired contact force while identifying
eters are given in advance, while several methods try the characteristics of environment, in which the
to obtain the desired impedance of the end-effector by environment is expressed with a nonlinear viscoelastic
regulating the impedance parameters as well as the ref-model and the desired trajectory is given beforehand.
erence trajectory of the end-effector according totasks  The previous methodgt,5,8] cannot deal with a
and environmental conditions. However, there does not contact task including free movements. The method
exist an effective method to regulate impedance param-[7] focused on the control of the contact force only
eters that can be applied to the case where environmen-n the normal direction of the contact plane for a sim-
tal conditions are changed during task execution. ple pushing task and cannot regulate the desired end-
This paper proposes a new on-line learning method point trajectory. The methodg,3,6] can be applied to
using NNs to regulate all impedance parameters and only cyclical tasks in which environmental conditions
the desired trajectory by extending the off-line learning are constant because the learning is conducted in off-
methods proposed by Tsuji et §,3]. The proposed line. Considering to make a robot to perform realistic
method can realize the on-line learning of contact tasks tasks in a general environment, the present paper de-
by introducing another NN only for identifying the un-  velops a new method that the robot can cope with an
known environment model. This paper is organized unknown task by regulating the control properties of its
as follows: Sectior? describes related works on the movements according to changes of environmental cir-
impedance control method. Then, the proposed learn- cumstances including nonlinear and uncertain factors
ing method using NNs is explained in Sectidhand in real-time.
4. Finally, the effectiveness of the proposed method is
verified by simulation experiments of contact tasks in-
cluding the transition from free to contact movements 3 mpedance control
and the modeling error of environments in Section

In general, a motion equation of amjoint manip-

ulator in thel-dimensional task space can be expressed
2. Related works as

Asadal4] developed a learning method to obtain - N T

the nonlinear viscous compliance of the end-effector M©9 +h(©.6) ==+ T (O)F, @)
by applying NN as a force feedback controller. Cohen
and Flash5] proposed a method using NN to regulate
the stiffness and viscosity of the end-effector, in which
the NN is trained to minimize a cost function on force
and velocity while the desired velocity trajectory of
the end-effector is modified to improve the learning
performance. Likewise, Yang and Asa@éd proposed

a progressive learning method using NN which can
obtain the target impedance parameters by modifying
the desired velocity trajectory. Against these previous
methods using NN, Tsuji et a[2,3] proposed the
iterative learning methods using NNs which can . .
regulate all impedance parameters and the desiredfc Zg(dXO’ dXo, dXo, t)’ )

whered € %" denotes the joint angle vecta¥(0) €
Q™M the non-singular inertia matrix, and®o, 6) €

9™ is the nonlinear term including the joint torque at-
tributable to the centrifugal, coriolis, gravity and fric-
tion forces.t € M™ represents the joint torque vector
and J € i s the Jacobian matrixt; € 9 is the
external force exerted on the end-effector of the ma-
nipulator from the environment in contact movements.
External forceF can be expressed with an environment
model including time-varying and nonlinear factors as
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where d{, = X§ — X represents the displacement
vector between the end-effector positiand the equi-
librium position on the environmetXs. g(x) is a non-
linear and unknown function.

The desired impedance property of the end-effector
can be given as

MedX + BedX + KedX = Fy — F, )

where Me, Be, Ke € %%/ are the desired inertia, vis-
cosity and stiffness matrices of the end-effector, respec-
tively. dX = X — X4 € 9%t is the displacement vector
betweenX and the desired position of the end-effector
Xgq. Fq € %! denotes the desired end-point force vector.
Applying the nonlinear compensation technique with

T = {(MY0)T M (0)J} h(6,0) — JT(H)F.

+JTMx(9){Fact— J6} 4)

to the nonlinear equation of motion(h), the following
linear dynamics in the operational task space can be
derived as

5( = FaCtv (5)

whereM (¢) andi(6, 6) are estimated values b and

h(6, 0), respectivelyM . (6) = (JM1(0)JT)~1 e \ix!
denotes a non-singular matrix insofar as the arm is not
in a singular postureFaet € 9! denotes the force con-
trol vector represented in operational space. F(8n
and (5) the following impedance control law can be
designed2,3,9] as

Fact= Ft + Ft + Xa, (6)
Fr = Mg1BedX + Mz 1K dX, @
Fi = —Mg*(Fg — Fo). (8)

Fig. 1shows a block diagram of the impedance con-
trol in the operational task space. Note that the force
control loop does not exist during free movements be-
causeFy = F; = 0. The force control loop functions
together with the position and velocity control loop dur-
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Fig. 1. The block diagram of the impedance control represented in
the task space.

an unknown environment by trial and error. Therefore,
the next section proposes the two-step learning strat-
egy to regulate impedance parameters as well as the
desired trajectry in which a motion controller part and
a force controller part are separately trained through
the learning of NNs.

4. On-line learning of end-effector impedance
using NNs

4.1. Structure of control system

The proposed control system employs four NNs for
regulating impedance parameters of the end-effector
and for identifying task environment characteristics.
Fig. 2 illustrates the structure of the proposed
impedance control system including three multi-
layered NNs: the Position Control Network (PCN) for
controlling the end-effector position; the Velocity Con-
trol Network (VCN) for controlling the end-effector
velocity, and the Force Control Network (FCN) for con-
trolling the end-effector force. Inputs of these NNs are
the end-point position and velocity and the tracking
errors to the desired trajectory. Furthermore, the FCN
takes the end-point forcE.. When learning is termi-
nated, it can be expected that the trained NNs will out-
put the optimal impedance parameters corresponding
to gain matrices of the designed controller(@&)—8);
Mz1Ke from the PCN,Mg 1B, from the VCN, and

ing contact movements. Using the designed impedance Mg * from the FCN.

controller for robotic manipulators, dynamic properties

The linear function is utilized in the input units of

of the end-effector can be regulated by impedance pa- NNs. The sigmoid functiom;(x) is used in the hidden

rameters. In general, however, it is extremely difficult

and output units given by

to design appropriate impedance and the desired trajec-

tory of the end-effector according to a given task with

oi(x) = a; tanh(x),

(9)
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Fafvipmant Fig. 3. The structure of the tracking control part using neural net-

works.
Fig. 2. The block diagram of the impedance control using three neu-

ral networks.
4.2. Learning during free movements

whereq; represents a positive constant for regulating  Fig. 3 shows the detailed structure of the tracking
the maximum output value. The following vectors rep-  control part using PCN and VCN. In free movement,

resent outputs of NNs: the force control inpufactis given as
T T T\' 12 — Vo — ¥
Op = (opl, Op2s -+ +s 0pl> eN, (10) Fact= Fi + Xd = Fp + Fv + Xd
T T
T 2 %p1 ov1
Oy = (001,049, ..., o) €N, (11) . :
2 x| 7% ks x (13)
2 + + Xd,
Of = (0;1, 0. .. Ofl) e i, (12) : :
where op;, oy; and of; € %! comprise thei-th row 0;1 O\Tz
of matrices Mg'Ke, Mz1Be, and Mg, respecti-

vely. where Fp and Fy € %! are control vectors computed

On-line learning of the NNs is conducted in the fol-  With outputs of PCN and VCN, respectively.
lowing two-step procedure inwhich amotion controller  L€aming of PCN and VCN is performed using the
part and a force controller part are separately trained following energy function:
using NNs. 1 - 1o 1o
E(t) = 5 dx(s)' dx(r) + 5 dXx(r)' dX(z). (14)

e First: PCV and VCN in a motion control part is ) . ®)

trained for improving the tracking control ability Synaptic weights of the PCNy;;", and the VCN,

of the end-effector to follow the desired trajecoty wl(}/), are modified in the direction of the gradient de-

Xq during free movements through minimizing the scent reducing; by

tracking errors. This implies that the robot is able

to prepare for contact by planniriy adequately, if Awg.))(t) = 8E(t§t) (15)
the environment is given. P

e Second: FCN in a force control part is trained DE)
for realizing the target forceFy during contact Aw(")() (\t/) (16)
movements through minimizing the force con- (l)
trol error, while modifying the desired trajectory
to reduce the end-point force error as much as OE1) _ OE(1) 0X(1) Fy(1) 90p(e) a7

possible. awg?)(t) ~0X(r) dFp(r) 90p(7) Bwl(-}g)(tf
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IE()  E(r) 0X(1) dF(r) 90y(1)
o) 3X() AR 90v(0) gu (1)’

(18)

wherenp andny are the learning rates for PCN and
VCN, respectively. The partial differential computa-

tions %’j}((t’)) aaf(‘((t’)) ;’gz((?) and ggvv((’r)) can be derived
90y(1)

by (13) and (14) whereas’2%). and w0
obtained by the error back-'propagatiolﬁ mettibd].

can be

0w (r)

However,%(% and%((% cannot be computed directly

because of the manipulator’s dynamics. For such com-

putational problems{% and glf;‘v((tt)) are approximated

in this paper by finite variations @sX () ~ AFp(t)Ats2
and AX(r) & AFy(r)Ats, respectively, and yield
[11]:

aX(r) _

2
9Fo(t) ~ AL, (29)
aX(@)

where Ats is the sampling interval andl is the I-
dimensional unit matrix.

When the learning of free movements has suffi-
ciently progressed to reduce the energy functign
it can be expected that the trained PCN and VCN
may output optimal impedance parametefs' K. and
Mz Be, respectively.

4.3. ldentification of environments by NN

In the proposed method, to reduce the burden of
the FCN learning, the linear environmental model is
introduced while modeling errors on the contact envi-
ronment are estimated using another NN.

An environment modeif’; can be expressed as
Fe = & (dXo, dXo, dXo, 1) . (21)

According to the target task, it may be possible to
give arobotic manipulator an environment model in ad-

vance. For that reason, the environment is expressed in awl(}e)(t) ) j:c(t) dFen(?) 8wg?)(t)’

this study with the following linear and time-invariant
model as

ch = gm(dXO, dXo, dXO)

- chXo+Bch0+Mcd)"(0, (22)
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Fig. 4. Identification of the environment model using EIN.

whereK¢, Bc, andM. € i'*! denote the stiffness, vis-
cosity, and inertia property of the environment, respec-
tively. However, some modeling errors are likely to ex-
ist between the real environmegin (2) and the given
environment mode$y,. The proposed control system
improves modeling errors on the environment using
the Environment Identification Network (EIN), which
is put in parallel with the given environment modgsg,

as shown inFig. 4. The EIN receives the end-point
force, position, velocity, and acceleration as the input
data. Then it outputs the force vecity,, compensating
for the force errors caused by modeling errors. There-
fore, the estimated end-point forés can be obtained
as follows:

Fc = Fem+ Fen. (23)

The energy function for the learning of EIN can be
defined as

Ee) = 5 {el) — )} {Fel) — 0} . (24)

The synaptic weights in the EINyl(f), are modified
in the direction of the gradient descent reduciygas
follows:

0Ee(t)

©
Aw: ([) =-7 ,
’ “ow®()

J

(25)

OEe(r)  OEe(r) dFc(r) 9Fon(r)

(26)

wherene is the learning rate for the EIN. The terms

%f% and ;’5;((’2) can be computed b{23) and (24)

Whereas% by error back-propagation learning.
wl.j




262 T. Tsuji,Y. Tanaka / Robotics and Autonomous Systems 52 (2005) 257-271

Synaptic weights in the FCN;,J(;) are modified in

-1
Me the direction of the gradient descent reduciycps
BE
200() = -, (29)
wld (1)

8Ef(t) 10 {aﬁc(t) 0X(1) | Fe(r) 9X(1)
wl() ~ 0Fo() L oX() 9F() T 9X() 9F()
Fig. 5. The structure of the force control part using neural net- 3ﬁc(t) 8)"((t) } 8Ff(t) BOf(t)

work, 0X (1) 0Fx(1) S 905(0) gu{ (1)’ 0

The condition”, = F. should be established at min- .
imizing the energy functiote(r) by the EIN such that \({)Vgu?fenf is }vh? learning rate for the FCN. The terms
F¢. can be utilized for learning contact movements even ;FA(% and ﬁff(,l) can be computed b{27) and (28)
if the exact environment model is unknown for the ma- gnq 30f(t) by the error back propagation learning.

nipulator. f?( ) _
Moreover,j}(((’t)), j;ff((?) andj;(((’t)) can be approximated
4.4. Learning during contact movements similarly to the learning rules for free movements as
IX(M) ~ As27 BX(D) A 8Xt_
The FCN is trained to realize the desired end-point Ff((t)) Al dF((t)) Al and ((t)) — 1 respec
' end- : dFc(r) dFc(r) aFc(t)
force Fy with the estimated end-point forck; cal- tively. The others iy aX(1) and aX(1) , are computed

culated by the well-trained EIN under the condition using the estimated end-point forég to concern dy-

that . = F¢ during contact movements, in which the namic characteristics of the environmentduring contact

force control error is computed using the environmen- movements wit{22) and (23) _ .

tal model from the position control error of the end- ~ Onthe other hand, the desired trajectory is regulated

effector. to reduce learning burdens on the FCN as much as
Fig. 5shows the FCN structure for learning during Possible using the following modifying rule X «(r) as

contact movements. Note that the synaptic weights of

the PCN and VCN are fixed during the learning of FCN - A x4(¢) = —nq 0E(r) (31)
to maintain the tracking ability for the desired trajectory aXd(?)
after leaving contacted environments. .

The learning in this stage is performed by ex- 9Ei(1) _ 9Ei(r) 0Fc(r) 8X(r) 9Fi(r) (32)

changing the force control inpufact given in (13) OXa(r)  dFc(r) 9X(r) BF¥(r) 3Xa(r)’
with
wherenq is the modification rate. The desired veloc-

ole ity trajectory is also regulated in the same way. When
Osz minimizing the force error of the end-point, the FCN
Fact= Fi + Fi + Xq = F; — T (Fa - ﬁc) + Xg. may express the optimal impedance paramﬂl;g?‘ as

output values of the networ®(z).
The designed learning rules during contact move-

ments can be utilized under the condition that the EIN
(27) has been trained sufficiently to establish the relation-
ship Fe ~ F;. However, the estimated error 6§ may
be greatly increased because of unexpected environ-
mental changes or the EIN learning error. To over-
come this problem, the learning ratgsandnq during
contact movements are determined with time-varying

T
O

Then, the energy function for the learning of FCN
can be defined as

E() = SUF0) — ROV UF) ~ B} (29)
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functions with respect t&q(r) given in(24) as v
MAX .
() = Ui ’ (33) Manipulator
1 + PEe(l) ’r
UMAX Il Initial and
- _d target position
1) = , 34

nd(7) 1+ pEo(D) (34) t=0, 8 [s]

wherepMAX andnA% are the maximum values of(r)
andnq(t), respectively, ang is a positive constant. It

is reasonable that the learning rates defined here be-
come small automatically to avoid mislearning when
the learning erroEe(z) is large.

0.2 [m]—>®

°/ Environment

DS, 7

Fig. 6. An example of a contact task with the circular motion.

5. Application to contact tasks

Effectiveness of the proposed method is investigated

through a series of computer simulations of two kinds nv = 15; the outputs of the NNs are within the limits
of contact movements including transitions between of _ 100 to 100.

free and contact movements. The employed robotic Fig. 7 shows changes of the end-effector trajectory
manipulator is of a four-joint planar manipulator with  of the manipulator with progress of learning during free
length of each link is 0.2m, the mass 1.57 kg, and the moyements. The numbers represent rotation times. The
moment of inertia 0.8kg fa The impedance control  generated trajectory by the end-effector does not agree
law is designed by means of the multi-pointimpedance \yith the desired circular trajectory before learning at

control method for a redundant manipulaf®®, 13} all. The end-effector can roughly follow the desired
The desired trajectory of the end-effector is generated trajectory in the first trial and almost agree with it in

using the fifth-order polynomial with respectto time  the second trial.

[14]. Fig. 8 shows the end-effector impedance parame-
The PCN and VCN are of four-layered networks ters, Mg 1Kk ;1 and MBS, before and after learning

with eight input units, 2 hidden layers with 20 units, of free movements: the output values of PCN and VCN.

and four output units. The FCN and EIN are of four-  pjagonal elements after learning increase, whereas
layered networks with 10 and 8 input units, respec-

tively, 2 hidden layers with 20 units, and four output
units. The sampling interval of dynamics computations 0lr 3
in the learning is set akss = 0.001s.

5.1. Task 1: circular motion
— before learning

The first target task for the manipulator is a circular 5
motion of the end-effector, as showrRig. 6, in which -
the end-effector rotates counterclockwise in 8 s.

5.1.1. Learning during free movements . ) ) .
The learning of PCN and VCN during free move- 033 ol 01 03 05
ments is performed, in which the initial values of x [m]

synaptic weights are generated randomly u d%?) ,
y(v) P 9 ] 9 y un | Fig. 7. End-point trajectories of the manipulator during the learning
lw;;’| < 0.01. Learning rates are setig = 13, 000, of free movements.
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(a) Before learning

100 100
14 50 _q:L 50
T . g
= 0 X 0 X

-50 b .50 y
X
¥ X y

(b) After learning (100 trials)

Fig. 8. Impedance parameters before and after the learning of free movements.

other elements converge upon very small values. Eachincluding some modeling errors expressed by the fol-
output value is nearly constant and time-invariant dur- lowing nonlinear dynamics as

ing learning of free movements. 2 .2 .
Foy = Kcy dy2 + Bey dy2 + Mg, dio, (35)

5.1.2. Learning during contact movements whereFy, is the normal interaction force from the envi-
Learning of FCN and EIN for contact movements ronment to the end-effector, the tangential foFge =

is performed using trained PCN and VCN after learn- 0, and the impedance parameters are seKgs=

ing free movements. The learning parameters are set1, 000, 000 N/m?, B¢, = 2000 N/m?, My, = 0.1Kkg,

as M™% = 0.0001, ¥ = 0.01, p = 10, andne = respectively.

0.001. The desired end-point force isfat= (0, 5)" N. Fig. 9shows time changes of the force erfy(zr) in

Note that no environmental positional information is (24) between the estimated forég and the real force

given to the manipulator. The given environmentmodel F¢ during the learning of contact movements. The force

also contains modeling errors. The EIN starts identify- error was considerably large before learning. It eventu-

ing modeling errors just after the end-point contacts ally decreased during learning. Some identification er-

with the environment, whereas the FCN is trained and rors are evident ata momentwhen the end-effector con-

the desired trajectory is modified using the estimated tacts with environment and when environmental char-

end-point forcef, given in(25). acteristics change discontinuously.

Here, characteristics of the given environment Fig. 10shows the changes of arm postures and end-
modelgm, in (22)agree with those of the real modgds point forcesF; of the manipulator in the process of
K¢ = diag.[Q 10, 000] N/m, B¢ = diag.[0 20] Ns/m, learning during contact movements. The large inter-

M. = diag.[0 0.1]kg underx < —0.1m, otherwise action force was generated until the learning of the
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— 300 t=0 [s]
™
4 t=2.5[s]
= t=5.5 [s]
w200 F
-
[=]
=
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f=1
2 100t
3
b=
g
E “ 1 1 1 1
3 4 5 G Environment
t [s] NN
(a) Before learning
(a) Stick pictures
e 60
Z no learning
—_ 30
= 4sp 1
[€5) —
z
g = / 2
5 30F LLG‘ 20 |
c -
2 3 10
< =
3 15} &
£ Z o) /
g 2 e
= 9 A s . . 0
2 3 4 5 6 s
t [S] 0 1 1 1 1
(b) First trial 2 3 4 5 6
t [s]
) End-point force
— 60
z
= Fig. 10. End-point force of the manipulator during the learning of
= 45) contact movements.
m&-
g ol errors remain only in a moment when environmental
g characteristics change discontinuously. This fact indi-
E s cates that the trained EIN did not completely identify
€ the modeling errors.
= . . . .
3 Fig. 11 shows time profiles of the impedance pa-
03 3 y 5 % rameter at the first and tenth trials, wheigj repre-
tls] sents the matrix elements 8f;1. The elements con-
© Second trial verge to very small values, except for @ which rep-

resents end-point mobility in thg direction. On the
other hand, the time history of (2) after the learn-
ing that the inertia parameter for tlyedirection de-
creases only in contact movements. In addition, out-
FCN had progressed sufficiently because the manipula- put values of the PCN and VCN/; 1K and M1 Be,

tor tried to follow the initial desired trajectory with the  remain almost constant during contact movements be-
trained PCN and VCN. The end-point force converges cause both PCN and VCN are nottrained during contact
to the desired one (5 N) with progress of FCN learn- movements. Consequently, the stiffndés and vis-

ing. In particular, the desired force is realized just after cosity Be become small for the normal direction dur-
contacts in the final trial. However, the force control ing contact movements. Therefore, the end-effector is

Fig. 9. Identification error of the environment model during the
learning of contact movements.
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8r 0.1

G2 (LD (1,2) @D

) £ 0.1

y [m]

-0.3

(3]
W
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&

6
t [s]
(a) First trial

2,2) 033 .
8 x [m]

Fig. 12. Virtual trajectories of the manipulator during the learning
of cantact movements.

v 0 respectively. The origin of the task coordinate system
is set atX¢. In addition, the end-effector of the manipu-
-4 lator is connected to the crank handle with viscoelastic
(1,1 (1.2) @, 1) properties.
s - | Learning of the target task is carried out with a two-
N o step algorithm to lighten the burden on NNs. Fip&c
£ [s] andr are estimated to determine the task coordinate
(b) 10ttemial system that must generate the desired trajectory of the
end-effector. Then, FCN and EIN are trained to regulate
impedance parameters and to identify the environment
modeling errors, respectively.
compliant in the normal direction to the environment ~ Computer simulations are executed using the same
surface. four-joint planar manipulator in the previous section,
Fig. 12shows the change of the desired trajectory. in where the manipulator has no information on crank
When the end-point force is larger than the desired end- Parameters and the given crank model includes some
point force, the desired trajectory is modified toward modeling errors.
the environment surface. On the other hand, when the
end-point force is smaller than the desired end-point
force, the desired trajectory is modified to go away
from the surfacefigs. 10 and 12how that the desired el
trajectory is modified to realize the desired end-point g
force during contact movements.

[ ]
w b
wn

Fig. 11. Impedance parameters before and after the learning of con-
tact movements.

5.2. Task 2: crank rotation

The proposed method is applied to a crank rotation
task, as shown irig. 13 which is a more advanced
constrained task than the previous contact tasks. In that
figure, Xoc and X¢ € %2 denote the rotation center of
the crank with radius and the tip of the crank handle, Fig. 13. An example of a crank rotation task.
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5.2.1. Estimation of center position and radius of
crank

The manipulator exerts a certain foréeon the
grasping crank handle at time= 0, which starts the
crank rotation. Estimation of ¢ andr is operated af-
ter the norm of the end-effector velocity| exceeds a
certain valuev.

The following conditions are established at tings
andr, (0 < t3 < 1p) @S

X" (1a)N(ta) = 0,
XT(1)N (1) = 0,

(36)
(37)

where| X (ta)|, | X ()| > vo, and|X () — X(ta)| > v1;
N(ta) and N(tp) represent the unit vectors perpendic-
ular to X(ta) and X(zp), respectively. Therefore, a line
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whereX (i) andA(i) denote the computed values using
(39) and (40)n thei-th trial, and O< y < 1.

5.2.2. Identification of crank model and learning
of end-effector impedance
The end-point impedancé/e, Be, Ke, and the de-
sired forceFy are expressed on the task coordinate sys-
tem. Therefore, the desired impedance model of the
end-effector in(3) is given by
R (a(r)) MeR(cx(r))dX + R (c(t)) Be dX R(cx(r))
+RT (1) KeR((1)dX = R(a()))Fa— Fe,  (44)

whereR(a(r)) € %2*2 represents a rotation matrix on
a(t). The FCN is trained to reduce the following energy
function expressed on the task coordinate system as the

passing on the end-point at each time can be determinedkg||owing:

with the corresponding norm vector, so that two lines
can be obtained.
The intersection of these two lines can be given as

X(ta) + pN(t1) = X(tp) + gN(tp). (38)

That equation yields the estimated center position of
the crankX ¢ and the estimated radiusas

p+q
=
Xoc = X(ta) + pN(ta) = X (1) + gN(tp). (40)

On the other hand, theaxis of the task coordinate
system is defined in parallel to the velocity vector of
the end-effector, whereas tlgeaxis points to the cen-
ter of rotation. Moreover, the rotation angle of the task
coordinate system with respect to the absolute coor-
dinate systemg(t), can be obtained uniquely under
0 < «a(r) < 27 by the following equation:

(=8 Z0-8)

However, it is quite likely thaf( o ands estimated in
the first trial may contain some errors. Therefore, the
precision ofXoc and 7 is improved by the following
iterative operations as

Xoc(i) = yXocli) + (1 — ¥)Xocli — 1),
(i) = yi(@) + (1 —y) (i — 1),

(39)

P =

0

7

cosa(r)
sina(z)

—sina(r)
cosa(r)

Xoc — x(1)

S’OC - y(t)

(42)
(43)

Ei() = 5 {Fa) ~ K@) Fel0)

x {Fa() — RT(«() Fe(0)} -

On the other hand, the environment mogl& con-
structed with the crank model and the EIN, as shown in
Fig. 14 Therein, the EIN is put in a parallel situation
with the given crank model expressed by

(45)

Teh + By = FFe, (46)

where ¢ denotes the estimated rotation angle of the
crank, I, the estimated moment of inertia, amt} is

the estimated coefficient of viscous friction on rota-
tion. The position of the crank handl&y, can be
computed using estimated informatierrid ¢, but it
may contain some errors. The EIN identifies the real
crank model using the end-point force, position, veloc-
ity, and acceleration. It takes an active partin modifying
the estimated position of the crank handlg,. Conse-
qguently, the estimated position of the crank handle can
be obtained by

&czxcm‘l'xcn (47)

and the estimated end-point forEgcan be represented
as

Fe= K¢ d)’\(oc‘f‘ Bc dj(oc, (48)

where the matricek . and B; € 3i/*! represent vis-
coelastic properties for connecting the end-effector to
the crank handle.
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Environmentmodel & |X
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Fig. 14. Identification of the environment using EIN in the crank
rotation task.

The energy function for the learning of EIN is de-
fined by

Ee(t) = = {Fult) — Fe)) {Felt) — e} (49)
2

Synaptic weights in the EINpS’), are modified in the
direction of the gradient descent as

8E
Aw®() = - (352)) (50)
t
OFe(r) _ Ee(r) 9Fe(t) 9Xen(t) 51)
owr) — dFe(r) IXenl?) 0w(r)’
wherene is the learning rate for the EIN. The terms
3?:8 and 33)50(3) can be computed b{48) and (49)

whereasa;(—‘:’(‘étr by back-propagation learning.

Furtherm]ore,KC and B. should be modified to
lighten the burden imposed on the FCN in learning
during contact movements. Therefore, the modification
variable of the stiffnesa K. is defined as

IEe(?)

AK(f) = —ke7or K1)’ (52)
0Ee(t)  OEe(r) IFc(1)
IKelt) ~ 0Falt) 0Ko)) 53)

where nxc is the modification rate. In the same
manner,B. is modified to reduce the energy function
Ee(2). .

The relationshipF; = F; is established when the
energy functionEe(z) is minimized by EIN learning
such thatF; can be used to the learning rule of contact
movements.
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5.2.3. Learning during contact movements for
crank rotation

Learning during contact movements is performed
for the crank rotation using the trained PCN and VCN
during the free movement in Secti@nl. Each struc-
ture of FCN and EIN is identical to those employed
respectively in Sectiob: four layered networks with
10 and 8 input units, respectively, 2 hidden layers with
20 units, and four output units. The desired trajectory of
the end-effector is a counterclockwise circular rotation
in 8s, which is generated under estimated crank pa-
rameters using the fifth-order polynomial with respect
to time[14].

Parameters for learning NNs were setigé* =
0.005, nY"X =0.01, p = 10, ne = 0.0001, nyc =
100, andnpe = 50, respectively. Characteristics of
the real crank model in(46) were set asl; =
0.133Nm, B, = 0.5Nms/rad,I; = 0.066 Nm, By =
O0Nms/rad,Xoc = (0.2, 0)" m, andr = 0.2m, respec-
tively. Initial viscoelastic properties for connecting
the end-effector to the crank handle were set as
K. = diag.[Q 10, 000] N/m, B¢ = diag.[Q 20] Ns/m,

05p
04

0.3

Identification error, e, (i ) [m]

0 5 10 15
iteration [times]
Identification error of the
center of the crank

20
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E
= 015}
o
g ol
L
=
k=
Z 005}
8
=
S () L 1 I}
= 0 5 10 15 20
iteration [times]
Identification error of the
(b) radius of the crank

Fig. 15. Estimation errors of rotation center and radius of the crank.
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Fig. 16. Identification error of the environment during the learning
of crank rotations.
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no learning
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End-point force along the
(b) normal direction
Fig. 17. End-point force of the manipulator during the learning of
crank rotations.

respectively. The desired end-point force was set as of crank rotation movements, wheffg, is expressed on

Fg=(0,5)"N.

First, forceF = (5, —5)" N is exerted on the crank
handle by the manipulator end-effector at time 0
to estimate the center position and the crank radius.
Fig. 15shows changes of the estimation errors of rota-
tion centeregc(i) = ||5foc(i) — Xoc|| and the radius of
cranke (i) = |F(i) — r|. Errors converge to almost zero
through several iterative trials.

Next, the FCN and the desired trajectory are regu-
lated using the estimated end-point foge whereas
the EIN identifies the environment modeling error.
Fig. 16 shows time changes di¢(z) defined in(49)
before and after the learning of contact movements.
The identification error is very large before learning,

the task coordinate system. The numbers in the figure
represent rotation times of the crank. It can be seen that
the end-point force gradually converges to the desired
one (5 N) with the progress of the learning of FCN.

Fig. 18 shows time changes of the impedance pa-
rameterMz1, and output values of the FCN in the
first trial and the tenth trial, wherg, (j) in the fig-
ure represents elements of the matigL. The ele-
ments converge to very small values, except fo2§2
which represents end-point mobility in tigedirection
on the task coordinate system. On the other hand, it
can be found from the time history of,(2) after learn-
ing that the inertia parameter for tlyedirection de-
creases only in contact movements. The gain matrices

whereas the error decreases according to on-line Iearn-Me‘lKe, Mz 1B remain almost constant because both

ing progress.
Fig. 17 shows changes of arm postures and end-
point forceFe, of the manipulator during the learning

e
PCN and VCN are not trained during contact move-

ments. Consequently, stiffness of the end-effedfer
and viscosityBe become small for the normal direction
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. (2.2) The proposed on-line learning method in this pa-
) / @0 per differs_ from the off-line learning methqu ir! th_e
15 b literature in terms_ of Whether not the iterative trial is
/ needed. The off-line learning methods must execute
™\

the iterative trial because the gradient decent of error is
calculated using results from the previous trial. In con-
trast, the proposed method can obtain that data on-line
without using past results. Therefore, an iterative trial
is not always needed for learning of NNs to progress ef-
ficiently. These considerations of the proposed method
are evident from experimental results for contact tasks.
For example, the manipulator can almost realize the
2.2) desired circular trajectory from the first trial in free
. / movement, as shown iRig. 7. In contrast, about ten
’ iterative trials were needed in the constrained move-
ment, as shown ifigs. 9-12 because the initial con-
dition changed considerably at each trial. For that rea-
son, several iterative trials were required to complete
= the learning. The proposed on-line learning method is
applicable even if the initial condition was changed at

°) 3
N
N
oc

t [s]

(a) Firsrt trial

@0

15 Lk
a2 every trial. This fact represents a great advantage of
3 : . \ . the proposed method: it is an extremely stringent re-
0 2 4 6 8 quirement that preserves the initial condition in the ac-
(b) ,Oih[flial tual environment. To the contract, the off-line learning

method can be conducted only under the fixed initial
Fig. 18. Impedance parameters before and after the learning of crank condition.
rotations. In addition, this study showed that learning for reg-
ulating the impedance parameters can be conducted
during contact movements. In addition, from the result effectively even with a conventional back propagation
of (2, 1) after learning, the NNs are actively trained us- type NN by devising the control system and the learn-
ing the tangential force to realize the desired end-point ing laws. However, a suitable NN structure for learning
force in the direction of the rotation center of the crank. robotimpedance should be investigated to realize more
effective learning with few iterations and to apply in
experiments with real robots. In light of such consider-
6. Conclusions ations, future research will be directed to development
of an effective method for determining NN learning
This paper has presented an on-line learning methodrates and improving the proposed control method to
using NNs to regulate impedance parameters of ma- allow for more complicated tasks.
nipulators’ end-points. The proposed method achieves
on-line learning by introducing the NN for identifying
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