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We propose a wearable pointing device using EMG
signals. By using neural networks, the system adapts
to variations in EMG signals caused by individual dif-
ferences of muscular features and minor shifts in elec-
trode sites. Experimental results show that the system,
which frees the operator from having to be in front of
a computer, is effective as a pointing device for a wear-
able computer.

Keywords: pointing device, EMG signal, wearable com-
puter, neural network

1. Introduction

With high-paced computer downsizing, so computers
are becoming increasingly mobile, as shown by the ap-
pearance of wearable computers.

Wearable computer interfaces must occupy minimal
space, be lightweight enough to wear, and require mini-
mal operation space [1, 2], yet many pointing devices pro-
posed for wearable computers are merely downsized con-
ventional devices, physically limiting operator movement.

These problems are overcome by using physiological
signals to develop a device enabling the operator to con-
duct pointing operations more intuitively while free from
physical constraints. Attempts to use physiological sig-
nals for such interfacing include Rosenberg [3], who de-
veloped a two-dimensional pointing device for wearable
computers, using EMG (electromyography) signals; and
Barreto et al. [4], who developed a computer interface
for the physically handicapped using EEG (electroen-
cephalography) and EMG signals, enabling pointing in
four directions and “clicks” using EEG frequency data
and surface electromyogram signals.

We are developing a pointing device in which a neu-
ral network recognizes EMG signal patterns to move
the pointer arbitrarily. Tsuji et al. [5] proposed an
EMG-controlled pointing device with which the pointer
is moved in an infinite number of arbitrary directions by
expressing direction as a combination of a finite number
of base directions. The direction of the pointer move-
ment was estimated by calculating the posterior probabil-
ity for each base direction using a log-linearized Gaussian
mixture network (LLGMN), proposed by Tsuji et al. [6].
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Fig. 1. Components of the prototype.

Considering the posterior probabilities to be vectors along
the base directions, they were then summed to determine
direction of the pointer movement [7]. Shortcomings in-
cluded using a clinical-model EMG measurement device,
making it unwieldy, and operating only in an exclusive
application preventing its use for controlling pointers on
commercial operating systems.

We propose an EMG signal-based wearable pointing
device that overcomes these shortcomings, enabling the
operator to control the pointer without physical con-
straints, and compact enough to be easily transportable.
A neural network incorporated estimates “events” based
on operator movement, enabling new event functions to
be added and realize a multifunction pointing device. By
training neural networks, the system adapts to individual
variations in EMG signal patterns or minor shifts in elec-
trode sites. The proposed system can be used for cursor
control in Windows.

2. Wearable Pointing Device

2.1. System Configuration

In the prototype (Fig.1), electrodes for EMG measure-
ment are attached to the operator via jockstraps wrapped
around the arm and fastened (Fig.2).

A compact EMG measurement device developed for
this study (Fig.3, Table 1) is transported easily because it
is much smaller and lighter than conventional EMG mea-
surement devices used in clinical situations. In the proto-
type, the operator wears a head mounted display (HMD)
connected 0 the PC when conducting pointing opera-
tions.
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(a) Exterior

(b) Inner side of jockstrap

Fig. 2. A photo of electrodes.

Fig. 3. The measuring equipment of EMG signals.

Software on the PC consists of a pointer controller for
measured EMG signals to move the pointer and an event
controller that controls events such as “clicks”, detailed in
the sections that follow.

2.2. Pointer Controller

Figure 4 shows the pointer controller. First, The EMG
signals for pointer control are measured and preprocessed.
The neural network then estimates the direction of the
pointer movement, and pointing is executed.

2.2.1. EMG Signal Processing

To process EMG signals, signals measured using L
pairs of electrodes for pointer control are converted from
analog to digital, and each channel is full-wave-rectified,
then smoothed using a 2nd-order digital Butterworth filter
(cutoff frequency: 1.0Hz). Time-series signals EMG,(n)
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Table 1. Specification of the measuring equipment.

Size W150xH40xD100mm
Weight 0.33kg
Frequency response 10Hz-340Hz
Rate of amplification About 2000

Measurement signal EMG signal, 6CH

Power supply USB
Current consumption Under 50mA
CMRR 104dB
Resoluton 12bit (Succesive Approximation type)
Sampling frequency 1kHz

Pointer control part

Direction Estimation]

S gy

EMG !
signals s

Operator

Bony

-{EMG signal processing|

i EMGfn) | EMG

T ok i+, SRR .

Fig. 4. Pointer control part.
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Fig. 5. Structure of the LLGMN.

({ =1,---,L) thus obtained are used to calculate di-
rection of the pointer movement and velocity. To es-
timate the direction, a feature pattern vector u(n) =
lu,(n), uy(n), -+ -, uy (n)]T € RE, normalized so the sum of
EMG,(n) for all channels equals unity, is used:

EMG,(n) ~ EMG) W

u; (Tl) = L
3 <EMGZ, (n) - EMij)
I=1
where EMG, is the mean value of EMG, (n) while relax-
ing the muscle.

2.2.2. Estimation of Direction

LLGMN [6] (Fig.5) used as the neural network for esti-
mating direction incorporates Gaussian mixture distribu-
tion and acquires statistical features of operator EMG sig-
nals by leaming. Before the LLGMN is used for pointer
control, it must first learn the relationship between opera-
tor EMG signal patterns and pointer directions [8]. Once
trained, the LLGMN estimates from the statistical model
the posterior probabilities of pointer movement in base
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directions and oufputs them from the output layer units
corresponding to base directions [5].

To lessen the operator’s psychological burden while
waiting for learning to converge, a terminal attractor, pro-
posed by Zak [9], was introduced in learning rules so a
maximum could be set for conversion time.

2.2.3. Pointer Control

Pointer control calculates direction of the pointer
movement and velocity from LLGMN output and esti-
mates muscle contraction.

Qutput from the LLGMN’s third layer (Fig.4) repre-
sents probability that the pointer will move in base direc-
tion k. Moving direction vector e(n) = (ey(n), ey (n))T of
the pointer generated by the nth EMG signal pattern is
defined as follows:

ex(n):—vﬁ%% R €3
ey(n) = \/—g_(%_% 3
ve(n) = §<3>ok(n)cos(2n(k»1)/1<) )
vy (n) :2(3)0k(n)sin(2x(k~1)/K) NG

where vy (n) and vy (n) are x and y components of vector
elements corresponding to base directions.

Muscular contraction level a(n) is calculated as fol-
lows:

3. (EMG,(n) - EIG?)

ofn) = I=]K N ()]
S EMGP™0,(n)
k=1
L
MG =Y (EMG@”(R)WEMG?) )
=1

where EMG, is the mean value of EMG,(n) while re-
laxing the muscle, )0, (n) is the posterior probability
of the base direction output by the neural network, and
EMGP® is the channel sum of EMGy;” (n) signals while
keeping the maximum voluntary contraction for that base
direction. The muscular contraction level is introduced to
compensate somewhat for ditferences in maximal volun-
tary contraction in the different directions, and is used for
computing the velocity of the pointer.

To ensure that the subjective feeling of pointer opera-
tion suits individual operators, pointer movement should
satisfy common physical laws. The velocity of the pointer
is calculated from muscular contraction level o/(n) and the
direction of the pointer movement e(n) using the follow-
ing impedance model:

Mp(t)+B(r)p(t)=F(). . . . . . ... ®

This equation of motion expresses the movement of a
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Fig. 6. Variable viscosity for pointer movement.

pointer with mass M, lying in a space with variable vis-
cosity B.(r) when it receives force F() by the operator.
p(t) is the position vector of the pointer. Force F(t) ex-
erted by the operator is calculated from ¢ (n) and e(n)
using a zero-order hold as follows:

F(t)= { go(nit)e(nAt)  (a(nAt) > o)

0 {(a(nAt) < o) ©

where nAr <1 < (n-+1)Ar holds, and Ar denotes sampling
time, and g force gain. Threshold o, is used for judging
whether a pointer operation takes place. Variable viscos-
ity B.(r) in eq.(8) is defined as:

~%tan"1{A(r—B)}+§“-
B.(r) = (0<r<r) - (10
B (rp < 1)
Bll — 4 Bt&
B, = ——ttn ‘{A(rO_B)}+—2~ 8}

where B, is the maximum B,(r), A and B are positive con-
stants, and 7 is pointer distance from its starting position.
B.(r) is B, when ry < r, beyond which viscosity remains
constant until F(r) = 0 irregardless of r. “Starting posi-
tion” means screen coordinates of the pointer when F(t)
exceeds 0, and the same starting position is kept until
F(t)=0.

Figure 6 shows the viscosity curve when A = 2 and
B = 1. When distance r is small and viscosity high, the
operator controls the pointer in smaller increments to po-
sition the pointer accurately on a small target. For large
distances when viscosity is low, the peinter is moved
quickly with lower muscle contraction so the operator can
move it quickly toward a distant target.

Using the impedance model to calculate pointer posi-
tion and velocity, operational “feel” is expected to match
operator muscle response. Variable viscosity in the model
enables the operator to control the pointer more accu-
rately, improving operability.

2.3. Event Controller

EMG signals measured from operator for event control
are preprocessed (Fig.7), and then the neural network es-
timates the event and executes it.
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Fig. 7. Event control part.

2.3.1. EMG Signal Processing

EMG signals measured using L' pairs of electrodes,
attached to a different area, e.g., the left forearm, are
processed similar to that in Section 2.2.1 to obtain
EMG;(n)(I'=1,---,L'). A feature pattern vector u'(n) =
[, (n), uh(n), - -+, ()] € RE, normalized so the sum
of EMG,(n) for all channels equals unity, is input to the
LLGMN. As information on muscle force associated with
input u'(n) to the neural network in Fig.7, Fy,,~.(n) is cal-
culated as follows:

1 L EMGil:(ﬂ)“’EMGfllﬂ

F( I(n) = R 1
EMG L [gll EM If?fmx - EMGFI:SI

. (12)

where EMG'/*" is EMG',(n) during maximal voluntary
contraction.

2.3.2. Estimation of Event

LLGMN different from that used to estimate direction
of the pointer movement is used to estimate events. Be-
fore the LLGMN is used for event control, it must learn
the relationship between operator EMG signal patterns
and operator arm movement, each corresponding to some
event. Once trained, the LLGMN estimates from the sta-
tistical model the posterior probabilities of movements,
and outputs them from output layer units corresponding
to events.

In forward calculation, nonlinear transformation is
done on input vector #'(n), as in section 2.2.2, to gen-
erate new input vector U'(n), then posterior probabilities
G0, (n)(K = 1,---,K') are output from units of the third
layer, which consists of K events.

For training, D' data sets of EMG signals for move-
ment, e.g., wrist flexion or extension, corresponding to
an event are extracted for each event to form a sample
data set of N'(= K’ x D') data. The training signal given
to units in the third layer generated by s-th input vector
u'(n) is defined as T'(n) = [T} (n), -+, T\ (n), -+, To (m)]".

w(n) is 1 when the event is &, and O otherwise. Just as
for the LLLGMN for pointer control in section 2.2.2, a ter-
minal attractor [9] was introduced into learning rules so
learning takes place in a limited time.

2.3.3. Event Control

In event control, data obtained as described in section
2.3.1 is used for event recognition and the event intended
by the operator is executed.
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EMG data is used to determine whether an event should
take place, and estimated muscle force Fy,,, (), obtained
in section 2.3.1, is compared to event generation threshold
M,. Events are thus recognized only when the threshold
is exceeded and it is determined that an event has been
generated.

To improve the accuracy of determining the event in-
tended by the operator, LLGMN output entropy is used
for recognition as an indicator of ambiguity of informa-
tion to prevent ambiguous recognition [10]. Entropy is
calculated from output O}, (n) from the LLGMN as fol-
lows:

K .
Hn)=-73% 30, (n)1og® 0l (n) . . (13)
k=1

Whether to suspend recognition is based on a comparison
of H(n) with threshold H,. If H(n) < H,, the event cor-
responding to the unit with the largest output ¥ 0%, (n) is
selected and executed. If H{n) > H,, recognition is am-
biguous and suspended.

The operator selects event settings, including event
types and correspondence between events and body
movement, adding functions such as “double click™ and
“scrolling” in addition to left and right “clicks”, or elimi-
nating the “right click” and retaining only the “left click”
and “double click”. The result is a multifunction pointing
device in which events are easily added or deleted to suit
individual operators.

The proposed pointing device features the following:

+ No physical constraints on the operator. The device
uses EMG signals from electrodes as an interface,
unlike a mouse or keyboard, which requires operat-
ing space.

» Stable, robust operation. Individual differences
among operators, shifts in electrode sites, or varia-
tions in skin resistance caused by perspiration, etc.,
are assimilated due to adaptive learning of neural
networks.

+ By applying a physical model (i.e., motion of a body
with inertial mass in a variable viscosity field) to the
pointer’s movement, it is possible to realize an oper-
ability that suits the operator’s muscle sense.

Readily changed pointer functions. A neural net-
work estimating events such as “clicks” enables the
operator to easily change functional settings.

-

»

Compact EMG measurement. The pointing device is
suitable for use with a wearable computer.

3. Experiment

An experiment was done to test the feasibility of the
prototype. Subjects were 3 healthy male students aged
22,23, and 23. Subjects were given time to practice until
they were proficient in system use.
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Fig. 8. A series of photos while manipulating the proposed system.

Bipolar differential electrodes were used to measure
EMG siganals. Six pairs were used — 4 on the right fore-
arm (L = 4; M. extensor carpi radialis, M. flexor carpi
ulnaris, M. extensor carpi ulnaris, and M. extensor polli-
cis longus) for pointer control, and 2 on the left forearm
(L' = 2; M. extensor carpi radialis and M. flexor carpi ul-
naris) for event control. Note that a certain amount of
shifting is allowed for the electrode positions because the
neural networks introduced in the system are capable of
adaptation. This is particularly useful in a wearable point-
ing device, where it would be impractical to require elec-
trodes to be attached to specific muscles each time it is
used.

In the experiment, pointer movement was associated
with right wrist bending, and the neural network was
trained accordingly. Events such as “clicks” were con-
trolled by left hand movement.

The data sampling frequency was 1000Hz, and the
number of components and learning sample data, which
are LLGMN parameters, were set at M, = M, =
1 and DY = 20. The 4 directions (K = 4), f =
0,m/2,3m/2,2nrad, were set as base directions for train-
ing the LLGMN for pointer control. Terminal attractor
parameters, common to both LLGMNSs, were set at learn-
ing time tp= 1, learning rate § = 0.5, and sampling time
Ar = 0.001.

3.1. Example of Operation

The proposed system was used to operate a software
application. Subject was asked to “double click” to
start a Web browser, go to a specified web page, then
exit the browser. When providing training data to the
LLGMN for pointer control, the four directions, f =
0,7/2,31/2,2nrad, were used for measuring directions.

Journal of Robotics and Mechatronics Vol.17 No.2, 2005

The number of events was set at K’ = 3, and dorsiflex-
ion of the wrist, palmar flexion of the wrist, and grip
were associated with “left click”, “right click”, and “dou-
ble click”. Other parameters were set as follows: o =
0.5, M;=0.25, H,=0.15, g = 20N, M, = 5.0Ns?/pixel,
B, = 5.0Ns/pixel, A =3.5, B==1.0, and r;; = 0 pixel.

Figures 8 and 9 show examples of experiment results
for subject A. Fig.8 shows photos of the subject’s hands
and corresponding operations on the monitor display.
Fig.9 shows processing data during operations. Fig.9(a)
gives results of the right arm, consisting of, from top to
bottom, EMG signals, muscular contraction level a(n),
and the estimated pointer direction. Shaded areas are in-
tervals for which it was determined from muscular con-
traction level that no operation took place. Fig.9(b) gives
results of the left arm, consisting of, from top to bottom,
EMG signals, muscular contraction level, entropy, and
discrimination resuits (i.e., events). Shaded areas repre-
sent intervals when an operational event took place. Grip-
ping at (A) in Fig.9(b), corresponding to a “double click”,
starts the software application (Fig.8(b)-(¢})). Dorsiflex-
ion, L.e., bending back, of the wrist, representing a “left
click”, at time (B) exits the application (Fig.8(e)-(D)). This
example shows that the system starts up a Windows appli-
cation and conducts intended operations.

3.2. Validity of Variable Viscosity Model

The next experiment was conducted to evaluate the va-
lidity of the impedance model introduced for the pointer
controller (Fig.10). A subject was asked to move the
pointer from the “start position” to the “target” and to “left
click” on the target as quickly as possible. The experiment
measured time from the moment the subject begins mov-
ing the pointer until “left click” is executed. Four base di-
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Fig. 10. Experimental conditions for performance analysis.

rections were used for measuring directions when provid-
ing training data to the LLGMN for pointer control. Pa-
rameters were set as follows: o = 0.5, M, =0.25, H, =
0.15, g = 20N, M, = 5.0Ns?/pixel, B, = 12.5Ns/pixel,
A =35, B=1.0, and ry = 90 pixel. Setting the distance
between the “start position” and “target” at 565 pixels,
and using the four base directions, up, down, right, and
left, as the direction of the pointer movement, measure-
ment was done with and without variable viscosity. When
not in use, viscosity was kept constant af an appropri-
ate value for moving the pointer. A single session con-
sisted of four tasks of moving the pointer in each of the
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Table 2. Results of comparative experiments.

{a) Proposed method using variable viscosity [sec]

Task 1 Task 2 Task 3 Task 4 Mean
Subject A || 488 £020° | 405 138 | #.505064° | 4535107 | 449%0.347
sobject B I 5.07:4£2.03 3402142 | 3.03:2049" 1 4.63:£1.99" | 4034097
sabject C {| 4.42:40.61% | 5401 1.51° [ 4.02::0.63" | 5.41:41.20 5.19£076%
- 5%, £x--- 1%

(b) Authors’ previous method using constant viscosity [sec]
Task 1 Task 2 Task 3 Task 4 Mean

subject A || 3.43+£2.47 | 7.11£3.93 | 5.50%1.79 | 500+ 1.2 | 3.80 001
sabject B [ 57245221 | 5.04+3.36 | 8435436 | 8.53+ 1.81 | 6934181
SUBeTL C || BRT 5291 | 731 22.84 | 6794321 | 6734183 | 748£0.09
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Fig. 11. An example of the experimental results.

four directions. Seven sessions gach were done, with and
without variable viscosity. For each set of seven sessions,
maximum and minimum results were discarded, and the
mean and standard deviation were obtained from the re-
maining five sessions.

Table 2 presents experimental results, and Fig.11
shows examples of signal processing results. Table 2(a)
is when variable viscosity was introduced, and Table 2(b)
when a constant viscosity was used. Asterisks * and ** in-
dicate results for which there were significant differences
at risk factors of 5% and 1%, based on a one-tailed test
in which the result with variable viscosity was used as
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the reference. Table 2 shows that, for all four directions,
the mean arrival time and its standard deviation are both
smaller when variable viscosity is used, showing that it
results in stabler operation. Fig.11(a) gives results when
variable viscosity was used, showing from top to bottom
EMG signals, muscular contraction level ¢(n), direction
of the pointer movement, and viscosity. Shaded areas are
intervals for which it was determined from the muscular
contraction level that no operation took place. Fig.11{b)
gives results when variable viscosity was not used, show-
ing from top to bottom EMG signals, muscular contrac-
tion level ¢t(n), and direction of the pointer movement.
Fig.11(a) shows varying viscosity B.(r). Less fluctuation
occurs in the direction of the pointer movement direction
compared to Fig.11(b}, showing that introducting variable
viscosity improves operability.

4. Conclusions

To develop an EMG signal-based pointing device for
wearable computers, we designed a prototype operated in
a Windows environment as a pointing device for wearable
computers, readily transportable because the EMG mea-
surement device is compact. A neural network estimates
“events” based on operator movement and lets new event
functions be added easily, realizing a multifunction point-
ing device.

Experiments verified that EMG signals acquired from
a compact EMG measurement device are used to conduct
pointing operations accurately and execute events such as
“clicks™ in a Windows environment. An experiment com-
paring impedance models incorporating variable and non-
variable viscosity showed that variable viscosity improves
operability.

In futwre work, we will improve the neural network for
estimating pointer direction by improving its estimation
accuracy, and also improve the hardware components,
including the development of electrodes that are easily
“worn” and removed, in an effort to construct a system
that achieves higher levels of practicality.
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