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A Recurrent Log-Linearized
Gaussian Mixture Network

Toshio Tsujj Member, IEEEENan Bu, Osamu Fukuda, and Makoto Kang&enior Member, IEEE

Abstract—Context in time series is one of the most useful and through minimization, or search for the global minimum, of
interesting characteristics for machine learning. In some cases, the the output error (cost) function [2]. Some drawbacks, however,

dynamic characteristic would be the only basis for achieving a pos- have been pointed out, which can be summarized as follows
sible classification. A novel neural network, which is named “a re- ’ ’

current log-linearized Gaussian mixture network (R-LLGMN),” is 1) NN needs a large amount of training data.
proposed in this paper for classification of time series. The struc- 2) A large-scale network structure is necessary.
ture of this network is based on a hidden Markov model (HMM), 3) To achieve good convergence, it takes too many learning

which has been well developed in the area of speech recognition.

R-LLGMN can as well be interpreted as an extension of a prob- lterations. . . .
abilistic neural network using a log-linearized Gaussian mixture ~ 4) There are likely to be many local minima for the learning

model, in which recurrent connections have been incorporated to of NNs.
make temporal information in use. Some simulation experiments In order to deal with these problems, a number of observa-
are carried out to compare R-LLGMN with the traditional esti-  tjons have been made following investigation into integrating

mator of HMM as classifiers, and finally, pattern classification ex- . e . .
periments for EEG signals are conducted. Itis indicated from these domain/task specific knowledge into the architecture of NN,

experiments that R-LLGMN can successfully classify not only ar- since.the generig NN does not have any mechanisms for inpor—
tificial data but real biological data such as EEG signals. porating any additional knowledge which can place constraints

Index Terms—EEG, Gaussian mixture model, hidden Markov ©n NN. This kind of NN can be named as model-based neural
model (HMM), log-linearized model, neural networks (NNs), pat- nhetworks (MNNSs) [2]. It extends NN functionality to include
tern classification, recurrent neural networks (RNNS). more explicit constraints on network geometry and connection
weights. Therefore, it is possible to construct networks that
respond to intrinsic features of the input data that are known
a priori. Consequently, the problem becomes much easier, and

LTHOUGH pattern classification has been one of the mogiis may allow the reduction of the network dimensionality and

actively researched fields for some years, even now vafe learning difficulties.
ious investigations are carried out to attain higher classification|y the meantime, many researchers have studied Bayesian
performance. The pattern classification problem is a kind of dgmssifiers, which can deal with pattern classification by the
cision-making problem that can be described as follows: Givgitimation of probability density function (pdf). The pioneering
an input vectorX (or input seriesX [¢]) and several output work by Richard and Lippman [3] demonstrated that outputs
classes which are knovapriori, decide to which class the inputof NNs, if estimated accurately, could estimate Bayesian
belongs. In other words, it is a problem of a mapping input veg-posterioriprobabilities. Then, by replacing the sigmoid acti-
tors into output classes. Therefore, the essential point to cQAtion function often used in NNs with an exponential function,
sider in order to achieve high classification performance is hgpe probabilistic neural network (PNN) was developed [4]. For
to estimate the mapping for classification from given data.  realization of PNN, the following three approaches have been

The 1980s witnessed the resurgence of neural netwokigygested: parametric, nonparametric, and semiparametric. For
(NNs), and the so-called backpropagation NNs [1] were showarametric approaches, a specific type of pdf is assumed for
to be capable of representing any nonlinear mapping usiggch event. The neural network is constructed by transforming
nonlinear transducers and layers with variable sizes. Inspirggs statistical model, and each component of the NN has
by this, the backpropagation NN was recognized as one of #gecific interpretation [5]. As for nonparametric techniques,
most attractive principles for learning classifiers. In principleyych as those described in published material, the pdf can be ap-
NN can solve the classification problem by determining weighfyoximated by simply summing up small multivariate Gaussian
even in an extremely high-dimensional space, so it was cQfstributions centered at each training sample point [4].
sidered that all the characteristics wégarnedautomatically  The semiparametric estimation of the pdf, having a flexible

structure that can represent any distribution and include a set
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Travén [6], Perlovsky and McManus [7], Tsut al. [8], [9], A
Lee and Shimoji [10], Streit and Luginbuhl [11] and Bishop P
[12]. Particularly, Tsujiet al. proposed an NN, a log-linearized Pl ) P(clx)
Gaussian mixture network (LLGMN), which estimates the pdf ’

based on the GMM and a log-linear model [9]. The weight coef- Aem
ficients of LLGMN include the parameters of the log-linearized
GMM that are the nonlinear combination of the GMM param-
eters, such as the mixture coefficients, mean values, and stan- = X)
dard deviations of each component. In addition, these weights “

are trained in the same manner as the error backpropagation rHIge.1 Gaussian mixture model
LLGMN is successfully applied to the EMG pattern classifica-~ ™ '
tion [13], where six motions of forearm and hand were classified . . .
using EMG signal measured from several pairs of electroded the algorithm of hidden Markov modgl (HMM). This net'
However, because this NN is based ataticmodel. it does not work can also be regarded as an extension of LLGMN, intro-

take context of time into consideration. In dealing with signa%UCIng recurrent connections into LLGMN. Using GMM, tae

of dynamic characteristics, the classification results of LLGMIQOS'{e”O”pr()b""b'l'.ty can be estimated qnd, 5|_multane(_)usly, the
rgcurrent connection makes use of available information on the
i

could lack consistency. In order to deal with this problem a . o
to obtain a higher classification rate, it is necessary to deverl]g € conte>§t. The welght c.oefﬂments of R-LLGMN correspond
the nonlinear combination of the HMM parameters, such as

adynamicNN. the mixing coefficient, mean vector, covariance matrix and tran-
Unfortunately, the structure of such feedforward NNs is.,. g coe T -

not appropriate for processing temporal sequences in practlsc't'g.-Ion probability. The weight coefficients of R-LLGMN, how-
ever, has no constraints as the parameter in the statistical model.

There are two main reasons, namely, 1) it is difficult to stor . -
. . . _Therefore, the representation ability of R-LLGMN should be
past internal states and 2) they treat each input pattern as n’E{% er than that of HMM, and R-LLGMN is expected to have

5 (c,m)

pendent events. Addressing these problems, many researc g[?er erformance in the case of temporal pattern classification
introduced recurrent neural networks (RNNs) [1], [14], [15 P . N 'p P ; meation.
This paper is organized as follows: Section Il gives a brief in-

into the field of pattern classification. I(troduction on LLGMN. HMM as well as the algorithm and ar-

It was Hopfield who first claimed an NN with feedback . . : . .
connection in 1982 [16]. Later, he showed the ability of thcéhltecture of R-LLGMN is described in Section Ill. The results

Hopfield NN, providing a solution to the “Traveling-Salesma f computer simulation and. pattern classification experiments
Problem” (TSP), for which the computational difficulty ha of the EEG are presented in Sections IV and V, respectively.

been much studied. The Hopfield NN is a highly conneth%ectlon Vi concludes the paper.

network, but it is usually not necessary to feed the overall Il LLGMN
network output back into the input layer. In some other cases '
where the multilayer perceptron (MLP) [17] is used, recuA. Log-Linearized Gaussian Mixture Model (LLGMM)

rent connection can be made between the hidden layers tq, terms of classifying an observed vectointo one of the””
encapsulate information. Also, Liet al. [18] claimed that by given classes, tha posterioriprobability P(c|x) is examined,

embedding the delay memory in the RNN architecture, the Nl the class with the highest one is determined according to the
could use the information at previous steps, and the NN Wo%yes' rule. In the LLGMM, the pdf of class(c = 1, ..., C)

be made less prone to the problem of long-term dependengy,nsroximated with a GMM as shown in Fig. 1 [9], and it can
learning. Recently, there have been many publications showigg qescribed as follows:

that RNN has been successfully used to learn various temporal
sequences and applied to temporal pattern recognition. Petp( Ix) =
rosianet al. [19] addressed the successful RNN for predicting

the onset of epileptic seizure. In the work of Aussem [20], a
dynamical recurrent neural networks (DRNN) is used for time
series prediction and modeling of small dynamical systems.
Zhanget al. [21] proposed the mixed order locally recurrent

neural networks to build long-term prediction models for

nonlinear processes. In this RNN, the output of a hidden
neuron is fed back to its input through several units with time

P(c, m|x) = Z Pl ml)f(zgqcv m)

m=1

P(c, m)P(x|c, m)

M= iM=

3
I
1™a

M.
S5 P(¢, m)Pxle, m)
1m’'=1

Q

e, mg (x; plo™), Bem)

M-

c M,
delay, and different hidden neurons can have different numbers m=L N Y e g (x5 ), )

of feedbacks. Schittenkogst al. [22] extended the mixture '=lm’=1

density networks (MDNSs) [12] in &ecurrentway to take into @)
account the previous conditional variances as in the GARGlhere M. (¢c=1, ..., C) denotes the number of components
framework. of classe, a.. ,, = P(c, m) is thea priori probability (or the

In this paper, we propose a novel NN, a recurrent log-limixture coefficient) for each componeft, m}. P(x|c, m) is
earized Gaussian mixture network (R-LLGMN), which is basege probability forx to be generated from the component
in classe, which is expressed usingx; u(>™), »(©™)), the
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d-dimensional Gaussian distribution, with mean vegtsr ™
and covariance matriX(¢:™ of each component.

Extending ggx; plem ylem)) with the mean vector
pem = plem™ ;Lc(f ™)T and the inverse of the
convariance matrisg(e:m)-1 — [s{™)], the numerator in (1)
is in the form as

e my (X; Il’(c, m)7 Z(C’ m))

27r)—(d/2) ‘E(‘-’w m)‘—<1/2)

= ac,m(

(2= 850)s; ™

.ML
M= T

X exXp —% T;r]

1

J

o) o)
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wherez;, ¢ = 1, 2, ..., d, is the elements at and¢;; is the
Kronecker deltas;; = 1 when: = j andé;; = 0 otherwise.
Applying alog-linearizationprocess to (2), we get

fc, m é log aC., my (Xa I‘l’(c’ m)7 E((*, 'm)) - ﬂ(c7 m)'[‘ X (3)

whereX € R andg(>™ e RH are defined as

X =(1, x5, 212, 2179, ..., 2124, T22, ToT3, ...

Tolg, ..., wd2)T (4)
ﬂ(c,m): cm) Zs(cm) (cm) Zs(c m) (cm)
zsﬁim)7 s%’m)?--.-/sﬁ’”).

T
—L@-6s™, L, =L s (5)
d d d
(c m) Z Z (e,m) /(c m) §c m) 10g o
=1 1=1
— %log ‘Z“’ ™| 4 log O, m (6)

and the dimensioif is defined asdf = 1 + d(d + 3)/2. Thus,
£..m is expressed as the product of the coefficient ve;ﬂfﬁl’")
and the modified input vectd. To remove the effectqf e m)

which is due to the statistical constrains of GMM, a new varlabe

Y..m and coefficient vectow (™) are introduced as

Yc,m Efc,m - fC, Me

rN\E T
= (g — M) X = wlem'X. (1)

The coefficient vectow (=) is defined as the difference be-

tween 8™ and B¢ M) and w(:Mc) = (. Using the
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Nonlinear transformation

N I

Fig. 2. Structure of LLGMN.

B. NN Structure

By applying the log-linear model, GMM is incorporated into
the three-layer feedforward NN shown in Fig. 2. Also, a simple
learning algorithm based on the backpropagation is employed
[9].

In the preprocess, the input vectrris converted into the
modified vectorX, according to (4). The first layer consists of
H units corresponding to the dimensionXfand the identity
function is used for activation of each uriit)O;, denotes the
output of thehth unit in the first layer.

In the second layer, each unit receives the output of the
first layer weighted by the coefficientzﬁf’ ™) and outputs the
a posterioriprobability of each component. The relationships
between the input of unitc, m} in the second layef>1.. ,,,)
and the output® 0. ,,,) are defined as

H

(Q)IC_m — Z (1)0 (" m) (8)
h=1
@7 ]
(2) _ €Xp [ c,m
Oc,m = C Mg ©)
S Y exp @I 0]
c'=1 m'=1
(C,M¢c) _

wherew, 0(h=1,..., H).

Fmally, the thlrd layer consists @' units corresponding to
the number of classes and outputs ¢ghposterioriprobability

for classc (¢ = 1, ..., C). The unitc integrates the outputs of

M. units{¢, m} (m = 1, ..., M,.) in the second layer. The
nction between the input and the output is described as

M.
®0, =01, = Z (2)067m

m=1

(10)

where the output® O, of the last layer corresponds to the
a posterioriprobability of class:.

Although LLGMN is based on a static model in which the
characteristics of the pdf do not alter through time, it achieves

coefficient vetorw(® ") as the weight coefficients, the modehigh performance in classification by incorporating the sta-
described above is transformed to a feedforward NN, that tsstical structure in the network. Since the weight coefficients
LLGMN. have no constraints and are mutually independent, the learning
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process is made flexible and taaswercan be searched within Furthermore, a large quantity of training data are required to
a much larger space. However, for time series signals, LLGMi&in HMM, which does not result in good adaptability.
does not achieve a sufficient classification performance. ToBecause of the desirable properties of NNs, the combined ar-
overcome this difficulty, it is necessary to develop some tecbhitecture of HMM and NNs (a so called hybrid HMM/NN) has
niques to incorporate dynamicstatistical model into the NN. widely spread in the field of ASR. The hybrid HMM/NN can
be divided into two types. In the first type, the standard frame-
work of HMM is kept intact, but the observation probabilities
lll. R-LLGMN are computed by an NN. Bourlard and Wellekens [32] as well
as Coheret al. [33] provided such methods using MLPs, while
A. HMM Robinson [34], Mitchelket al. [35], and Strom [36] developed
As for temporal classification, the HMM [26], [27] is a well- this kind of architectures with the RNNSs. It is easy to imagine
developed technology, which has been successfully used mibst if NN just plays a part in the work of HMM, then the system
particularly in the domain of speech recognition [27]. consequently gets to be complex, as does the training algorithm
A Markov process is a stochastic process for which progs well. Some of the weaknesses of HMM still remain. Al-
ability distribution of the present state in a sequence isternatively, Bridle [37] proposed a “Alpha-Net” that treats the
function of model parameters and the previous state, andfggward-algorithmcomputation as a recurrent network. In his
independent of all history prior to that. The HMM assumes thatudy, the Alpha computation of HMM is considered as a net-
a Markov process can only be observed via another stochastiwk, so all the parameters in HMM are transformed into the pa-
process which produces a sequencelservationor outputs rameters in the network, and they can be modified with the NNs
resulting from the underlying Markov process. Therefordraining method. However, the Alpha-Net just develops HMM
a complete specification of an HMM requires two moddormally to a NN architecture, namely it is justapyof HMM.
parametersV and M, which denote the numbers of states anth the rest of this section, we will give the description of the
observations, respectively, and three probability matrides R-LLGMN, and it can be regarded as an NN which introduces
(state transition probability)B (observation probability) and a log-linear Gaussian mixture model into COHMM.
« (initial state probability). As for classification we need one
HMM for each class:, then the probability of the particular B. Log-Linearized CDHMM

streamx = (x(1), x(2), ..., x(T)) we observedP(X|c),  |etus consider a kind of CDHMM, which is shown in Fig. 3,
is computed using the probability matrices, B and @, \here there ar€” classes in this model and the clas¢c €
finally the most probable one is chosen. The computation ..., C}) is composed of{_ states. The observation proba-

probability is made by employing a forward-algorithm [27]pjjity of statek in class: is approximated with Gaussian mixture
The Baum-Welth algorithm [26], [27] or equivalently the EMmodel. The system undergoes a change of state (possibly back
(expectation-modification) method [28], provides a way o the same state) in each class. Suppose that, for a time series
estimation of the probabilities aA, B and« from training x(t) € R? (t =1, ..., T), at any timex(¢) must occur from

data. _ . one state: of classc in the model, wheré € {1, ..., K.}.
On the other hand, a continuous denSIty HMM (CDHMM) According to this modeL given a time Serie”S, the

was introduced for continuous signals (or vectors) in many pragposterioriprobability for class:, P(c|x), is derived as
tical problems. The observation probability matBxs replaced

by continuous probability density function, usually a Gaussian : Ke ) K. s (k)

density is used in CDHMM. Since Gaussian mixture density F(c[%) = > P(c, k|x) = <=, @1

can be used to approximate any continuous probability density k=1 k=1 %~ as (k)
cd=1k'=1

function, the modeling ability of the hidden Markov processes

has, thus, been greatly enhanced. Baetmal. [29] extended iz symmation of the posterioriprobabilities for all the state
the Baum-Welth algorithm to CDHMM, with some limitations, classc. Here ¢ (k) is the forward variable, which is defined
Jua}ngat al.[30] furthgr e>.<panded the estimation algorithm, angg the probability for partial time seriés(1), x(2), .. ., x(t))
their group has applied it to speech recognition. to be generated from clagsand input vectox(t) occurs from

~ The HMM have been proved to be very effective in praGyate; in classe. According to the forward algorithmys. (k)
tice, producing high levels of classification accuracy. Howevefgn pe computed as follows:

the structure of HMM is not always knowa priori, which

depends on problems. In the field of acoustic speech recognint (k) = 7£bs (x(1)) (12)
tion (ASR), for example, tha priori model topology (e.g., a K.

left-to-right HMM) is chosen to ease the computation. Some- ., c Noc e

times there are complex tradeoffs that have to be made betweearf(k) - Z -1 ()7, b (x(2), L<t=T (13)
model complexity and the difficulty of training. Also both the

discrete HMM and the CDHMM consist of many parametersyherey;, , is the probability for state changing frokto k in
so that the estimation process is usually very sensitive to initialassc, ahdbi (x(t)) is defined as tha posterioriprobability
ization. Rabineet al.[31] combined a segmentlkimeans pro- for statek in classc corresponding ta:(¢). In addition, (12)
cedure to initialize estimates of model parameters, and then ithestrates the initial phase, where tlaepriori probability 7,
Baum-Welth algorithm is used as a “model refinement tool€quals toP(c, k)|,_,, although in most practical problems

k'=1
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Fig. 3. CDHMM with C classes ands. states in class.

is unknown. With GMM g, b (x(¢)) in the right side of (13) straints during the learning of the weight coefficients. There-
can be derived with the form fore, the new variablé’; , , and the new coefficient vector
¢ e Wi, . ., areintroduced as follows, similarly to LLGMN:
Vier, 105 (x(2)) o

M,k Yk.c/’ k,m(t) = fi»:? k,m(t) - flc((v, Ko, Mo, i (t)
’Y]f;/; kTec, k,my (X(t), u(c, k, M), E(C, k, m))

(]

c C T
m=1 = (ﬂk’,k,m - ﬂI{c,KC,JVIC,K) X(t)
M, & —(d/2) (e b, m) —(1/2) c T
= 3 e km(@m) WP sl k) S )} (16)
m= . The weight coefficientvy, , .. is defined as the difference be-
J C C' o C
1 (c, k,m) tweeng;, , ., andg Mo o1 SOW = 0.
% _1 2 §.)8" () (t k', k,m Ko, Ko, Mo, i Ko, Ko, Mc,
exp | —3 ; ;( sy i ()z(t) Because of this transformation, the new pcara?nmé’r:;m has
i 4 no constraints as the statistical parameter, and the constraints
n Z Z gekm) (e km) (1) in &g () andBy . ., such as the positive definiteness of
e gt Hj ! the covariance matrices are ignored. Therefore, the parameter
= space ofwj, , ,, becomes larger than that 8f, ;. ,,,, and the
1 4 (c,kym) (c,k,m) (c,k,m) 14 weight coefficientwy, , ,, canhave any real number. Note that
. > s H; (14) " this transformation does not result any loss of information in
=1 i=1 spite of Y,Z . . . (t) = 0, since the variablég, , (1)
where 7. g m, p&Fm™ = (ugc’k’m), . Mgak,m))T’ in (15) is redundant because@ccz1 S Ple, kx(t)) = 1.
(e k,m) ¢ gdxd (e k.m) and z;(¢) stands for the mixing Subsequently, (13) can be rewritten in the form
’ 1] 2
proportion, the mean vector, the covariance matrix of each K.
component{c, k, m}, element of the inverse of covariance «aj(k) = Z gy (K )y 1b5(x(t))
matrix $(¢-* ™)1 and element ok(t), respectively. k=1
Taking thelog-linearization(see II-A) of vy, e, k, mg(x(t); K,
uler b, e hm)), we get =Y o (e [V 0],  t>1. A7)
A . . k'=1
C m(®) 2108V 1T kom ( 1); (Cvkv’”).E(Cv"vm)) . .
§it,m (1) S 10870 17,k mg (X(1); 1 ’ On the other hand, when= 1 in (12), employing GMM as
65 . TX(1) (15) Well as the log-linear model, we can derigg” ", B s
o w, S andY, "  similarly. It is the same as the case 1,

whereX(t) € R™ andBj, , , € R are defined similarly py teplacings?, , in (14) (15) with7¢. Then (12) would be
as those in LLGMN (4)(5)(6). We can see tiggt , ,, can be expressed as T '
expressed as the product of the coefficient ve@pr, ,,, and

the modified input vectoX € R, where the element of the af (k) =mibi(x(1)) = exp [Y,j,"@c"’m}
vectorfy, ;. ,, consists of the parameters of the statistic model, L
and the modified input vectdX(¢) includes the product of the = exp [w}'c’,’"“k”m X(l)} . (18)

elements of the input vects(t). o

Hence, the model can be developed as the network structuréh this paper, we regan,’ ", = w{, ;. ,,,, because both of
using By 1. ., as the weight coefficients. However, most elew;",*  andwy, , , have no constraints and include many un-
ments of8;, ;. ,,, are constrained by the statistical properties &nown statistical parameters. Consequently, many parameters
the parameters in the model. This constraint may cause a difff:the probabilistic model such as the mixing coefficient;, n,

cult problem in the learning procedure: how to satisfy the cothe mean vectop(>*: ™) the covariance matrix(>* ™) and
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The fifth layer
The fourth layer
. : The third layer
M,
e The second layer
The first layer

Nonlinear transformation
xlT TxZ eecoece Txd

Fig. 4. NN structure.

the transition probability;, , are replaced by arbitrary param-where® 0%, (0) = 1.0 for the initial phase.
eterswg, ;. ,,,. In Section 11I-C, we transform this model to the  The activation functions in the fourth layer are described in
network structure, in which the coefficient vecter, , ., is the form

used as the weight vector. K.

Wret) = og, . (t 23
C. NN Structure i) kzzjl b, 1(1) (23)

The structure of the proposed NN is shown in Fig. 4. Itis a ) e (h)

five-layer recurrent NN with a feedback connection between the Wog(t) = c K. : (24)
fourth layer and the third layer. First of all, we define the number ) Z @I¢(t)
of units in each layer. The fifth layer contaigsunits, and for J=1k=1
each unitc (¢ = 1, ..., C) there are. branchconnections. A |ast the unitc in the fifth layer integrates the outputs of

C . .
Then,>"._; K. units corresponding to thebeanchesorm the K, units{c, k} (k =1, ..., K.) in the fourth layer. The rela-

fourth Iayer. The Unit{c./ ]C} (k =1,..., KC) in the fourth tionShip in the fifth Iayer is defined as
layer connects witlk. units in the third layer which consists of

ZCC=1 K.? units. There aré/, , components set for the units . K. .

{e, k, K'Y (K =1, ..., K,) inthe third layer, so the total units Gy =" Do) (25)
in the second layer arg."_, Y% K,2M., ; units. Mean- k=1

while, the input vector seriegt) € R (t =1, ..., T) is mod- G oc(t) = O re(t). (26)

ified in the same way as LLGMN, then the vecB(t) € R¥ . _ .
acts as the input of the first layer. Therefore, the first layer con- L€t us consider the case where the length of time sdries

sists of H units, and the identity function is used for activations one, andk’. = 1 for each unit in the fifth layer. A$ = 1
of each unit as well(V 1, and 0, denote the input and the for all the time, the recurrent connection in (22) does not work

output, respectively, of theth unit in the first layer. any more. In this case, usidg. = 1, the relationship from the
Unit {¢c, k, ¥, m} (m = 1,..., M,}) in the second second layer to the fifth layer [(19)-(26)] can be reorganized as
layer receives the output of the first layer weighted by thH@llows:
coefficientwy, . ,, ,- The input(2)I,§,7k7m(t) and the output H
@05, (1) are defined as Oy (1) = Z WOwt) WS 1 . n (27)
H h=1
DL o m®) =Y DOu(t)wy (19) /
K, k,m h k' k,m,h M,
h=1 - 21 €xXp ((2)Ilc,l,m(1))
D0(1) = —"= 28
2051 0= 00 (i) 0 R R C B
The output of the second layer is added up and input into the c=1m'=1 Lhm
IE!rg Ilayer. Alﬁo’ the output of thg foufrtf|1| Iaye.r is fed back to thﬁ/hich is exactly the same relationship as the one between the
third layer. These are exr])\;esse as follows: second and third layers in LLGMN (see (9) and (10)). As is to
e, k ap e . . .
(3) re O @) e say, when it is not necessary to consider the dynamic properties
Lo i () = z_:l Ok, 1, m (1) @1 in the data sequenc¢d’ = 1) or the recurrent connections in the

proposed NN are not significant, it reduces to LLGMN. In other
@0, () =Wo5 (t— 1P (1) (22) words, LLGMN has been extended and affixed with recurrent
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TABLE | 2
FORWARD ALGORITHM OF R-LLGMN AND THE CORRESPONDING 2
COMPUTATION OF CDHMM. R-LLGMN INCLUDES THE FORWARD 538
CoMPUTATION OF CDHMM As A SPECIAL CASE ’é §
i3
o
R-LLGMN CDHMM % g
<
Input vector x(t)(1=1,...T) x(9) (t=1,..,T) =3 §‘
[
2nd layer (Z)C),f._ ) g(x(0); pekm , 3(ckm) s E
Ope (= ) oo ek £0
3rd layer Tee @ = % Q05,0 Bex () = 3 Tem 8(x(0); pekm), glekm) g2
m=1 m=1

A
@yec, =% Ghe
1.0 = o, (&

3rd & 4th 0 ,E, ki

Kc
Jayer a,® =k>;.la..,<kmﬁ Bi(x(®)

Ke
) Bog @0 ¥rg, @

Fig. 5. Examples of the ratio d¥r to N withd = 2.

5th layer Ooc(n) P(c|X)
Coefficients Weikmh r, c.lw;ll(c'k'); E(C'km; Yk
UnderK; = K» = --- = K¢ = K andM; 1 = My, =
. . . o= My g, =My =-+=M.y == Mc . =M,
connections, so we named the NN presented in this paper (Qg) and (30) result in
R-LLGMN.
Table | shows the correspondence of R-LLGMN to CDHMM. Nr=CK>M (1+ 3d+ }d*) (32)

The input vector series, which is transferred into the first layer
of R-LLGMN, is exactly the same observation sequence in the
model of CDHMM. The units in the second layer act alike as the
mixture components of the continuous observation probabili@g2
;jhe_nsny function in CDHMM [s_ee (14)]_' The calculation in thefnput is two. It is obvious thaiVy is larger thanV¢ in most

ird and fourth layers, associated with the feedback conneige g hig may indicate that R-LLGMN has a better represen-
tions, represents the forward algorithm (or Alpha computatio tion ability. Although R-LLGMN has more parameters, we

[27]. Finally, units in the fifth layer output the posterioriprob- can train it with only one sample (time series) using a gra-

ability P(c|x) of classc for x. On the other hand, the weight CO-yient learning method, while for CDHMM, at least two sam-
efficientswg, , ., between the first layer and the second laye ' ’

4 i e t ¢ d ; din the f les are needed to calculate mean and standard deviation for
correspond 1o the translerred parameters used in the forw; E%h Gaussian component. It could be expected that even if the
computation, such as the mixing coefficienty, ,,, the mean

; ; . training date in the learning process is of small size, R-LLGMN
vectorp(>* ™) the covariance matriX (> *) and the transi- g gp

. . : achieves a better estimation than CDHMM.
tion probability;, ;. With respect to these, R-LLGMN can be

interpreted as a hidden Markov neural network (HMN), basgd Learning Algorithm
on CDHMM, and can model the observation sequence through

Ne =CK* 4+ CKM(1+d+ d?). (32)

Fig. 5 shows the ratio oV to N¢ with d = 2. It should
noted that in the experiments in Section V, the dimension of

learning only the weight coefficientsy, , ... A set of vector streams(t)") (t = 1,...,T; n =
However, R-LLGMN is not just @opyof CDHMM: itis su- 1, ..., ) are %Q/)en for t(;a)umng R(‘L—)‘-GMN with teacher
perior because of a better parameterization. An essential paiagtorT™ = (T}, ..., T2, ... . T¢”)T (n=1, ..., N)

is that R-LLGMN replaces all of the parameters in CDHMMor the nth input streamx(™). Then, theseV vector streams
with the weight coefficientsws, , ., and this replacement are divided intal subsets, while each set consists’oftream
removes restrictions of the statistical parameters in CDHMMlasses(N = L x C). If the vector streank(") is set for
e.9.,0 < r.k.m < 1, standard deviations of GMMs-0, the classt in subset (Il =1,...,L), thenTé(”) =1, and
and so on. Therefore, the learning algorithm of R-LLGMN{™ = 0 for all the other classes in this subset. It is supposed
is simplified and is expected of higher generalization abilitshat the network catches the character of the data set, if for all
than that of CDHMM. Another important distinction betweenhe streams the last output of stre&ft), namely,(® 0¢(T},),
R-LLGMN and CDHMM is the number of parameters useis close enough to the teacher sigrai™. In this paper an

in these methods. The number of parameters of R-LLGM&hergy function for the network is defined as

(Ng) and that of CDOHMM(N( ), which is the sum of element

numbers ofyg, ., re k, m, p{= %™ and (- * ™) are given as — S = ShS T log G O(T 33
ollows: J—ZlJn——ZlZl ) log POY(T,). (33)
c I(r n= n= c=
Np = Z K, Z M, H The learning process is to minimizk that is, to maximize the
= = likelihood that each teacher vectf™ is obtained for the input
c K. streamx (™).
= Z K. Z M. (1+3d+1d? (29) Usually, the weight modificatiodwy, ;. ,, j, for wg, 4 .
=1 k=1 is defined as
(& C K. N oJ
Ne =3 K2+ Y M p(l+d+d%). (30) AW o = =N Y (34)
c=1 c=1 k=1 n=1 awk,7k1m1h



TSUJlet al: ARECURRENT LOG-LINEARIZED GAUSSIAN MIXTURE NETWORK

in a collective learning scheme with a fixged> 0 as the learning
rate. Because of the recurrent connection in R-LLGMN, the
backpropagation-through-time (BPTT) algorithm [1], [23] is
used. It is supposed that the error gradient within a stream
(block) is accumulated and weight modifications are only
computed at the end of each block; the error is then propagated
backward to the beginning of the block. So, using the chain rule
for the streanx(™), 9.J,, /0wy, . ;, in (34) can be expanded

in the following way:
o.J,

c
awk’, k,m,h

() n (p ODORN(T0 — 1)
Z ®) OWIL(T, — 1)

y OWIT, —t) 0POg, (T, —1)
OD05, (T — 1) OO, (T — 1)

oI (T, —t) 0P05, . (T, —t)
* 8(2)02’, k,’m,(Tn - t) 8(2)12’, k,m(Tn - t)

a(2>1,§,, koo (Tn — 1)

c
awk’, k,m,h

T,—1

X (F(c',k”), (e.k) =P OF (T — t))

C Kc/

> AL (1)

/=1 k'"=1

WO, (T, —1t)

@I, (T — 1)
x W 05 (T =t = 1)PO5, 1 (T — ) Xn(T — 1)
(39)

where(™A¢,, (t) is defined as the partial differentiation df,
to WOy, (T, —t)

/ aJ,
(n) C// (t) == ,—n (36)
k 94 0¢, (T, —t)
andl (¢ xry, (c, 1) is defined as
_J1, (d=¢k'=k)
Lo wn, o0 = {0, (otherwise). (37)
(36) can be derived as follows:
A, () = AT 0 D0 (T,)) 9007 (T,)
k! = 8(5)ch(Tn) 8(4)02,’,, (Tn)
(n)
T ’
= —°c 38
(O) OC/ (Tn) ( )
C KC/I KC//
WAL+ =Y Y Mag. Y
=1 k'""=1 k=1
y oWos,, (T, —t) WIS, (T, —t)
8<4)I£://I (Tn - t) 8<3) Oi.ll/7 k! (T'n - t)

8(3)02,//’ k1 (Tn - t)
X aDOT, (T — (t+ 1)
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K. K. i

C
=3 3 Maghe Y

C,’:l k//l=1 k//ll=1
4 c’
>< (F(c//’ k”,), (c/’ k/lll) _( ) Ok/li (Tn - t))

DO (T — 1) (3 e
k”l—n (3)ICII rmnrr T - t .
@I(T, — 1) Kk (Tn =)
(39)

In this paper, the dynamics of the terminal attractor (TA) [24]
is incorporated in the learning rule in order to regulate the con-
vergence time of the learning. The differential equation of TA
is defined as

0= —u’. (40)

When the parametétis determined a8 < 3 < 1, is amono-
tonically nonincreasing function, and always converges stably
to the equilibrium point in a finite time, since the Lipschitz con-
ditions are violated at = 0

du

du
where 3 determines how the dynamics converges, such as
smooth or sharp, although the convergence time is fixed
depending on the initial condition = w,

tr u=0 up™?
tr = dt = —=_29
d /o / i (1-0)

If TA, which is defined above, is incorporated into the energy
function (33) of R-LLGMN, the convergence time of the
learning can be regulated [25].

Let us consider the incorporation of TA into R-LLGMN,
in the proposed learning method, the weight coefficients of
R-LLGMN are considered as the time dependent continuous
variables and the time derivative f, , , ;, is defined as

oJ
C
awk’, k,m,h

u=0 =7

— _lBu/i’fl

(41)

u=0

(42)

< 0.

Wir o, b = —Tta’Y (43)

(44)

2
9 k,m,h )

wheren,, > 0 is positive, andy is calculated using constafit
The time derivative of the energy functiohcan be calculated
as

= _Wtaj’ﬁ <0 (45)
Thus, the convergence time can be given as
v R0 R
0 Ji J Nta(1 — B) Mea(1 — )
(46)

where.J, is an initial value of the energy functioh calculated
using initial weights, and is the final value of/ at the equilib-
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TABLE 1l TABLE Il
PARAMETERS OF THEHMMs USED IN THE EXPERIMENTS CLASSIFICATION RESULTS OFEYE STATE USING LLGMN,
LLGMN W ITH RNF, HMM, CDHMM, AND R-LLGMN
Tc Ac Bc
Class I 0.154 0423 0423 0730 0.227 0.000 0.033 Type of the methods | LLGMN ];,l;’g%ig HMM CDHMM | R-LLGMN
(c=1) [1.0,00,00] [0.079 0314 0.607] [0.075 0215 0312 0.393] Sublect A R oLl 9.5 957 95.7 95.7
0.079 0.607 0314, 0075 0215 0312 0398 (male) sD 04 03 00 00 00
0454 0273 02737 | [0.040 0244 0269 0447 SubjectB | R 932 934 88.1 873 924
Class II [10,00,00] [0,172 0.294 0_534] [0,484 0228 0.080 0_208} (male) SD 06 0.1 00 00 00
(c=2) 0412 0294 0294) | Loass 0228 0080 0208 SubjectC | R | 813 89.7 938 934 952
(male) SD 1.1 0.5 0.0 0.0 0.0
R 88.5 92.5 925 92.1 944
D Total =5 17 03 00 00 00
” o
E R :Classification rate [%] SD : Standard deviation [%]
Ec
£
s 4
5 B = 100 §4O
—g o N’
s} =i
A 58 EE
0 10 20 30 40 50 O 10 20 30 40 S0 & 580 S5 20
Length of data (T) Length of data (T) 2% gg
(a) Class I (b) Class II S a8 0
O 60 20
Fig. 6. Examples of the data used. (a) Class I. (b) Class II. 100 60 10
T 201 “*L T 10070 ! L
rium point. In the case of ; = 0, the equal sign of (46) is held. T: Lenght of the time series, L: Number of data subset

Thus the convergence time can be specified by learningyrate
On the other hand’ in the Casel}f 75 0' the convergence time Fig. 7. Classification rates of the R-LLGMN for different data size.
is always less than the upper limit of (46).

The learning is carried out by a discrete form, derived from _ 100— ===, -
S SOZN R
) fe [T+
. At <)) RS | &2
Wkt by, (E+ AL) = Wit e, 1 (1) + B .’l \/ §%
s C . C O V)-g
X (s by, 1 () + Wir g, m, n(E+ AL))  (47) © 1680 ,/P" 10
N 7 o
where At denotes the sampling time. The total number of % 01 4L T 10070 7L
learning iterations becomes /A¢, and the computation time T: Lenght of the time series, L: Number of data subset

depends on this number. At is determined as a small value, o _ '
the energy function decreases accuratew according to (45)_ Fig. 8. Classification rates of the HMM for different data size.

IV. SIMULATION EXPERIMENTS out using various sizes of training data. The training data in-
FIudesN vector streams which are further divided imtcsub-
Isrvets, where each set consist&odtream class€sV = L x C).

he number of subsets and the length of the time seri@s

Simulation experiments were performed to explore the abili
of R-LLGMN, comparing the classification performance o
R-LLGMN with the one of HMM for experimental data T=T,=T = = Ty) changed from 1 to 10 and from 20

generated with HMMs. It should be noted that the computécg 100, respectively. The R-LLGMN and the Baum-Welth algo-

Eirgggzmw?;rifval:nrga\é\:eggfgl\/%?gtp TV;? ggwslzgzoeg' f':/cl))r/r?rtshﬁthm were trained five times with different data of the same size,

. . fhen the five sets of coefficients were examined. The R-LLGMN
internet websiteé. ; . . .
. . learned according to the dynamics of the terminal attractor in-
The time seriefd = 1) were generated for two classes . .
. . corporatedt; = 1 s andAt = 0.000 25 s, that is, 4000 itera-
(C = 2) using two different HMMs set for each class (se . : .
. . ; . ions), and the learning of Baum-Welth algorithm would termi-
Table I1). The input series are one-dimensional and are encode . .
. nate when the change of the parameters per iteration becomes
to four symbols, A, B, C, D, which correspondto 0, 1/3, 2/3, a
. ess than a threshold of 0.000 01.
1, respectively. These real numbers are used for the numerica o -
s to the recognition process, each set of coefficients was

calculation. The HMMs used are full connective, and there aﬂ%ed to recognize five sets of data, which comprises 400 se-

three states for each model and four distinct observation syFlne_-S (200 for each class) with the same data length as the cor-

bols (output_of the model). Fig. 6 shows examples of the g’em?crasponding training data. Then the rates of classification were
ated data with a length of 50. .
calculated over 10 000 results ¥55 x 400) for each size of the
The R-LLGMN was set as follows® = 2 K; = Ky = . .
training data. The mean values and the standard deviations of
3 H =3 andM,. = 1 (see lll-C). The Baum-Welth al- e . -

: ' ; ._ the classification rates for each size are shown in Figs. 7 and 8.
gorithm was prepared to estimate models of the same S8 ase note that the directions of axeg'adnd L are reversed
those defined in Table Ill. Classification experiments carried ' .

0 make the figures shown clearly. For cases of large data size,

Itp://svr-ftp.eng.cam.ac.uk/pub/comp.speech/recognition/ the classification rates of the R-LLGMN are almost the same
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as the HMM, indicating that R-LLGMN can work as an esti- Artificial flash light
mator of HMM. Alternatively, given training data of small size, ‘ /\/\/\/\/\ Q
the Baum—Welth algorithm results in a worse classification rate Receiver 5//
than the R-LLGMN. R-LLGMN can achieve high classification = 7
performance for the small size of data because of the inheritance Transmitter
Of the NNSs. Head_band

D EElectrode

V. EEG PRTTERN CLASSIFICATION [
Computer

Bioelectric signals such as EEG and EMG are typical time
series with dynamic characteristic, which are expected t0 Bg 9. structure of EEG determination system.
control signal for a new type of a man—machine interface. The
bioelectric signal ranges widely in frequency-domain and con- 2) Photic stimulation by opening, closing eyes and an artifi-
tains high frequency components, so adequate signal processing’ g light (opening).
is necessary. In particular, it should be filtered through a well-de- Subjects were seated in a dark room. There is an ad-
signed low-pass filter toremove the high frequency components, iiona state in this condition, an artificial light is used
while the pattern classification of the signal must be done to hile the subjects open their eyes. A flash light (xenon,
reveal the operator’s intention. However, it is very difficult to illuminating power: 0.176 J) was set at a distance of 50 cm
perform the filtering and the classification simultaneously. The 50 the subject’s eyes. Learning data and classification

authors had tried to classify EEG signals with recurrent neural  y4t4 are recorded for three states of EEG signals in the
networks such as Jordan’s and Ellman’s networks [38], [39]. It ¢5me manner as the condition 1.

was, .h.OWG.VG“ too difficult for only use of th_em to achleve h|g_h Although the input length of the time series is fixed in the ex-
classification accuracy because of the considerable time-vary iment, the duration of meaningful and effective EEG signal is
characteristics of EEG signals. To overcome this difficulty, Ts e ; :

et al. [8], [9], [13], [25] investigated the pattern cIassificatiorgOt always fixed indeed, but changes depending on classes and

; X . .. _.subjects. It is considered that if the length of the input signal is
problem of EEG (EMG) signals using a static probabilisti N :
NN, LLGMN, and a recurrent neural filter (RNF). Althoughﬁmg enough, the learning itself can select an appropriate length

) . . : o > for the discrimination automatically. The fixed duration used in
this method attained relatively high classification rates, it y

. ; . i iS I hofthei ignal, which
necessary to train two different types of NNs, that is, LLGM 2E);pp))zrrlT;thljstrjltésltzalzgr&g&ragotnemput signal, which means
and RNF, therefore the learning procedure becomes quite '
complicated and general optimization is almost impossiblg. Feature Extraction of EEG Signals

Alternatively, R-LLGMN ensures that the filtering process and

the pattern classification can be achieved at the same time. . L ;
Inpthis section, as an application of R-LLGMN, the EEG?a" of electrodes, so that the spatial information of the EEG
' ’ jgnals on the location of the electrodes cannot be utilized. The

signal classification has been done using the same datain [9 - . Lo
'9 meal using nl ]Zfequencycharacterlsucs of EEG signals, however, significantly

comparison. R-LLGMN is based on CDHMM, and inherits lot _
of advantages from it. It can be expected R-LLGMN realize@anges depending on the eye states. Therefore, the spectral
ormation of the measured EEG signals were used as follows.

higher learning/classification performance using a one-netw : i
g 9 P 9 e power spectral density function of the measured EEG

structure and a simple learning algorithm. signal was estimated using fast Fourier transform (FFT) for
every 128 sampled data. The function was divided into several
ranges (from 0 to 35 Hz). The frequency bands of this range
Fig. 9 shows the experimental apparatus. A simple and hansigre determined based on the clinical use of the brain wave
electroencephalograph (IBVA, Random ELECTRONICES DHéelta, theta, alpha, beta). Time series of the mean values of the
SIGN) was used to measure EEG signals. The experimeralver spectral density function within each frequency ranges
system consists of the headband, transmitter and receiver. Wege calculated and normalized between [0, 1] in each range.
transmitter was attached to the headband. The EEG signals miaus, the two-dimensional data (corresponding to frequency
sured from the electrodes were digitized by an A/D converteange [0~8], [9~35] [Hz]) were obtained and used as the input
after they were amplified and filtered through low-cut (3 Hzyector to the networks.
and high-cut (40 Hz) analogue filters. The noise in the EEG sig- o . . )
nals can be reduced significantly by the bipolar derivation bg« Classification Result for Opening/Closing EEG Signals

The electroencephalograph used in the experiments has one

A. Experimental Apparatus and Conditions

tween the two electrodes located at Fpl and Fp2. The classification experiments were performed using five
The EEG signals were measured in the following conditiongiethods: R-LLGMN, LLGMN (II-B), LLGMN with RNF
1) Photic stimulation by opening and closing eyes. [9], Baum-Welth algorithrm (HMM and CDHMM). In

Subjects were seated in a well-lighted room. FirsR-LLGMN, parameters of the network architecture are set as:
EEG signals were measured with both eyes opened &fid= 2, K1 = K> = 1, H = 6, and component for each unit in
closed (60 s for each). The measured signals were usedhsthird layer is one. The parameters used are chosen to make

Ieammg data. Next, SUbJeCtS were asked to switch thelrzThe CDHMM computer program is based on “Speech recognition system

eye states alternatively according to a pseUdorandqgﬂiS-Vl.l)" (Electrical Engineering and Computer Engineering Department,
series for 450 s. University of Newcastle, Australia).
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experimental conditions as equal as possible. In LLGMN, o ;,,3,
H = 6 andC = 2 in the first and third layer, and the second O GW Mtk M
layer consists of six units. As to LLGMN with RNF, there are g - »Classified CMisclassified
eight units in RNF, which is connected to the same LLGMN Elighton WEN NN 0 o -
explained above. In the RNF, fully interconnected units in the %z; open| 1 Ll I B
second layer keep the internal representation, so that the time § close ‘ ‘
0 100 200 300 400 [s]

history of the input data can be considered. Therefore it shows
an effect as a filter and makes thgosterioriprobability from  _. T ,

r : Fig. 11. E le of the classificat It for three ¢ f the phot
the LLGMN smoother. For HMM, it is used to estimate model§['i9r]nu|ationlxampe o1 fhe classtlication result for fhree fypes of the photie
with one statd N = 1). The structure of CDHMM used in the

experiments is settled with the same condition as the one of . L
R-LLGMN. through learning states of open and close can be easily divided

dnto two regions, thus all the three methods achieve results with

Experiments were performed for three subjects (A, B, C;
ra:D. equal to zero.

males). First, Fig. 10 shows an example of the classification
sults of LLGMN, LLGMN with RNF and R-LLGMN (subject L )
A). In this figure, the timing of the switching eye states, thD- Classification Results for Three States of EEG Signals
input EEG signals, the outputs of LLGMN, LLGMN with RNF  Fig. 11 shows an example of the classification result of sub-
and R-LLGMN, and the classification results of R-LLGMN argect A. In this experiment, the TA learning was repeated five
plotted. As can be seen, the R-LLGMN performs at a very highmes to gain a better convergence. Although it can be seen that
classification rate of 97.6%. the classification became difficult to classify compared to the
Table Il shows classification results for all subjects. Theesults in Section V-C, a classification rate of 87.4% was still
mean values and the standard deviations of the classificatehieved.
rate are computed for ten kinds of initial weights, which Table IV shows the classification results for all subjects. Al-
are randomly chosen. According to the results for the thrédeough the results were worse than those of the classification for
subjects, except for LLGMN, all the other methods attaineapening/closing the eyes, R-LLGMN realized almost the best
high classification rates. Generally, LLGMN based on a statgtassification performance.
Gaussian mixture model is not suitable for classification of As a real biological data, EEG signals are very complicated
dynamic signals like EEG, while the other methods contalvecause no one can simply give the exact number of states and
the dynamic statistical model. It should be noted that LLGMMomponents of them. This motivated the experiments examining
with RNF has a rather complicated construction, so that tieBanges of the classification rates of R-LLGMN depending on
difficulty of learning this method may be a critical problemthe number of states and components. In the experiments, the
In addition, although training for HMM and CDHMM can benumber of subseté = 5 and the length of time series = 5
carried out easily, a large amount of training data is neededere used, and the number of statéwvaries from one to five,
On the other hand, R-LLGMN can train the static (a Gaussidime number of component® from one to ten. The results of
mixture model) and dynamic (recurrent connections) parts @bject B are plotted in Fig. 12. It indicates that the classifica-
the same time even with a small amount of data (see IlI-Gjon rates can be improved by increasing the number of compo-
Because the task of discriminating two eye states (open amehts and states. A further investigation is worthy to study how
close) is relatively easy for HMM, CDHMM, and R-LLGMN, R-LLGMN can cope with a more complicated model, which
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TABLE IV
CLASSIFICATION RESULTS FOR THEPHOTIC STIMULATION USING LLGMN,
LLGMN WITH RNF, HMM, CDHMM, AND R-LLGMN

Type of the methods | LLGMN | SioMp | HMM | CDHMM | RLLLGMN

SubjectA | R | 758 844 82.9 85.5 510
(male) | SD | 05 00 00 00 00
SubjectB | R | 712 8.1 84.8 83.8 843
male) [ sD | 19 09 00 00 00
SubjectC |_R_| 658 74.6 767 78.6 814
(male) [ SD | 17 18 00 00 00

R | 729 82.0 81.2 82.7 85.5

Tol | 14 09 00 00 00

R :Classification rate [%] SD :Standard deviation [%]

315

It has been shown that R-LLGMN is suitable for the classifi-
cation of bioelectric signals such as EEG, since the filtering
process as well as the discrimination have been merged together
in the same network architecture.

In our future research, we would like to conduct a theoretical
analyzes on the recurrent capabilities of R-LLGMN. The
connections between the third and the fourth layers represent
Alpha computation in CDHMM, and it can be expected that
R-LLGMN can acquire any structures of a Markov model
through learning, such as the ergotic model, the left-right
model and so on. Also, our future research will be directed
toward revealing potential ability of R-LLGMN comparing

with CDHMM and improving the learning algorithm.

Classification rate (%)

(1]
[2]
[3]
o 4
S 10 [4]
5 51
g 6
k-
i 4
[}
- [6]
& 0 8 10
4 6
4
xk 2 2 M [7]
K : Number of the state, M: Number of the component
(8]

Fig. 12. Change of the classification rates depending on the numbers of the
states and the components of R-LLGMN (subject B). [9]

contains more states and stronger connection. We will make an
additional report on this in the future. [10]

V1. CONCLUSION [11]

In this paper, a new model-based NN, R-LLGMN, has been
proposed to deal with time series classification. R-LLGMN is[12]
derived through the modification of HMM, and includes HMM |13
in its structure, so R-LLGMN can be considered as an HMN.
Furthermore, R-LLGMN can be interpreted as an extension 014]
LLGMN, where recurrent connections are embedded to approx-
imate the inherent dynamic characteristics in the time series si?-
nals, and the LLGMM successfully used in LLGMN is also uti- 15]
lized to compute the pdf of input pattern. Simulations and ex-
periments have been carried out to examine the classificatid#6]
capability of the proposed network.

In this paper, as the first stage of our research, the compayt7]
ison experiments between R-LLGMN and other classification
methods were carried out, and high learning/classification per; 8]
formances of R-LLGMN were confirmed. The results of the
EEG pattern classification experiments showed that R-LLGMN
can realize a relatively high classification rate, and difference&®
among subjects are not significant because of NNs incorporated.
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