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This paper proposes a method of modeling heart rate
variability combining wavelet transform with a neural
network based on a hidden Markov model. The pro-
posed method has the following features: 1. The wav-
elet transform is used for feature extraction to extract
the local change of heart rate variability in the time-
frequency domain. 2. A new recurrent neural network
incorporating a hidden Markov model is used to model
the different patterns of heart rate variability caused
by individual variations, physical conditions and so
on. In experiments, five subjects were subjected to a
mental workload, and the proposed method was used
map subjective rating scores of their mental stress and
the pattern of heart rate variability. Experiments con-
firmed that the proposed method achieved highly ac-
curate modeling.

Keywords: heart rate variability, mental stress, wavelet
transform, recurrent neural network, hidden Markov
model

1. Introduction

Modern society is the source of physical and mental
stress in many people. Cases of sudden cardiac death due
to a busy life or irregular habits have also been reported,
and life threatening conditions increase for patients with
heart failure and cerebrovascular disease if health care is
neglected in daily life. It is important to objectively evalu-
ate physical condition based on a physiological index.

Heart rate variability (HRV) includes many frequency
components, and yields information through frequency
domain analysis™, For example, Delaney et al. reported
that short-term psychological stress produces significant
changes in sympathovagal activity”. They used a simple,
noninvasive method based on the timing and frequency of
HRV Bernardi examined whether talking or reading (si-
lently or aloud) could affect HRV?. Ishibashi et al. also
used spectral analysis of HRV to estimate the changes in
autonomic control in response to disparate stimuli pro-
duced by mental tasks and graded head-up tilting®. How-
ever, if the power spectrum of HRV is calculated using a
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fast Fourier transform, it expresses rough information in
a fixed period of the time series signal, and the dynamic
changes of the autonomic nerve activity cannot be ex-
pressed. It is difficult to analyze the nonstationary pattern
of HRV using this method during exercise. The wavelet
transform (WT), which extracts local features of HRV in
the time-frequency domain, is used to overcome this dif-
ficulty®”.

When we analyze the HRV spectrum, we must take
into account that the changes in the spectrum pattern
differ among individuals. Most previous studies defined
specified frequency ranges, such as low-frequency (LF)
and high-frequency (HF) components, in the power spec-
trum of HRV and extracted an integrated or maximum
value of the power in each range. However, this method
is not always applicable because the range, scale, and
speed of changes in the spectrum are affected by factors
such as individual variations and physical conditions. We
tried to construct an individual model of HRV We can then
examine whether the HRV pattern measured another day
fits this model or not, and may detect unusual physical
conditions.

Neural networks have been used to model and evaluate
the ECG signal. Minami et al. combined feature extrac-
tion by Fourier transform and a back-propagation neural
network (BPN)® and detected tachyarrhythmia in real
time. Fahoum et al. combined WT and an RBF neural
network (RBFN) to detect life-threatening cardiac ar-
rhythmias”. However, the purpose of these reports was to
detect the abnormal waveform on the ECG, and they did
not state whether HRV was caused by physical and men-
tal stress. A problem arises because BPN needs large
volumes of training data and many learning iterations.

We developed a statistical neural network called a Log-
Linearized Gaussian Mixture Network (LLGMN)'*™.
This network is structured based on a Gaussian mixture
model and a log-linear model, and can discriminate elec-
troencephalograms and electromyograms'® better than
other neural networks. We also proposed a Recurrent Log-
Linearized Gaussian Mixture Network (R-LLGMN)",
which uses recurrent connections added to the units of
LLGMN to discriminate a time sequence of the signals
highly accurately. R-LLGMN includes a hidden Markov
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Fig. 1. Structure of the signal processing.

model (HMM)' in its structure and can modify the
weight coefficients by the back-propagation through time
(BPTT) algorithm'. Unlike HMM, the weight coeffi-
cients have no statistical constraints (e.g., 1 = transition
probability = 0, standard deviation = 0), so R-LLGMN
can realize a greater learning ability than HMM for even
a small volume of training data.

This paper proposes a method of modeling HRV that
constructs the individual model of HRV using the R-
LLGMN. In the proposed method, the changes of HRV
in the time-frequency domain are extracted by WT. Time
histories of these changes, which correspond to many
frequency components, are used for the input data of
R-LL.GMN because the changes of the spectrum pattern
caused by physical and mental stress are complicated
individually. Nonetheless, several frequency components
are correlated with the autonomic nerves, respiration and
so on. R-LLGMN includes the recurrent connection to
cope with nounlinear and nonstationary characteristics.
This network can extract the distinctive components cor-
related with the subject’s condition, and model the com-
plicated mapping between HRV pattern and a subject’s
condition through adaptation learning.

2. Modeling of HRV

Figure 1 shows the structure of the signal processing,
consisting of the measuring part, the feature extraction
part and the modeling part. The measuring part measures
the HRV time series based on the R-R intervals, and the
feature extraction part extracts the feature patterns of this
time series in the time-frequency domain. The modeling
part models the feature pattern using R-LLGMN. The
details of each part are explained in the following sub-
sections.

A Measuring part
The ECG is monitored with a 1.0[kHz] sampling fre-

626

quency (Polygraph 360, NEC San-ei Instruments, Ltd.),
and the HRV time series is sampled based on the R-R
intervals. The HRV time series is then smoothed based on
third-order spline curve fitting and resampled as
hp(i){ms] with a 2.0[Hz] sampling frequency, where i
indicates the i-th sampled data.

B Feature extraction part

This part extracts the feature patterns from Ap(i). It
first calculates the mean values hp,{(i)(i = I;) and standard
deviations hp«{i) every I; samples as time-domain infor-
mation.

\/ S Op@)-hp, Y
hp )= Vi )
1

£

Multiple-frequency components are then extracted us-
ing WT as the frequency domain information®”, Here, let
us consider a continuous WT of (7). This transformation
is defined as

, 1 t-b
(W, fanb) = o= [ Reyw e

where a; is a scale parameter that selects the extracting
frequency range, and b is a shift parameter that selects
the extracting time period. y«(¢) indicates a mother wav-
elet (Gabor function) defined as

1 £

Y(t) =
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Fig. 2. Structure of R-LLGMN.

where the parameter w, is set to w, = 2nfy, fo = 0.5, and
the parameter «, which regulates the time width of the
Gabor function, is calculated as

2

The scale parameter a; in (1) is calculated as a; =
a(l=12, ~,L - 1). ao is defined as

logw,  ~logw,
L-1

a,=exp |

where W, = Oy, Opnin = 28 i, fun = 0.01 are the extract-
ing maximum and minimum angular frequencies.

Using the above Eqgs.(1)-(6), we calculate the power of
WT |[(Wy.fi(asi)]. The frequency components, which are
calculated by the scale parameters ap ~ ar.4, are divided
into S equal ranges and averaged within each range. They
are filtered out through the fourth order Butterworth filter
(cut-off = Cy), and the smoothed signals Ap.i) (s = 1,2,
-+, S) are extracted.

Finally, the feature patterns in the time-frequency do-
main Bp(Y=[hpn(i), hpaa(i)s hpra(i), hpua(i), = hpulD)"
are normalized by the mean values during the rest, and
resampled as x(n) = [u(n) () xs(n), -, xp(n)]” € R
every I, samples, where n indicates the n-th feature pat-
tern.

C Modeling part

R-LLGMN"™ is used in this part to cope with nonlinear
and nonstationary characteristics of the HRV patterns
caused by individual variations, physical conditions and
so on. R-LLGMN includes HMM'” in its structure, and
can realize greater modeling ability than HMM for even
a small volume of sample data because the weight coef-
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ficients of R-LLGMN have no constraints such as the
statistical properties of HMM (e. g., 1 = transition prob-
ability = 0, standard deviation = 0).

The structure of R-LLGMN is shown in Fig.2. This
network is a five-layer network with recurrent connec-
tions between the third and the fourth layers. First, the

input pattern x(n) = [x:(n).x2(n), -, xp(n)]" € R (n =
1,-+,N) is converted into the modified vector X € R":

X(n) = [1, x(n)T, xl(n)z, x(nyx,(n),,
x,(r)xp(n), xz(”)za x(mxy(n),

o, (), (1), o, x, ()]

The first layer consists of A units corresponding to the
dimension H,(H = 1+D(D+3)/2), aund the identity function
is used to activate each unit. The input ’I;() and output
MOu(n) in the first layer are defined as

Theunitc, k, K, m{c=1, -, C; k, k' =1, -, K; m=1,
-+, M2 in the second layer receives the output of the first
layer weighted by the coefficient wi .2, where C is the
number of classes, K. is the number of states, M. is the
number of the components of the Gaussian mixture dis-
tribution corresponding to the class ¢ and the state k. The
relationship between the input and the output in the sec-
ond layer is defined as

H

L) =, PO g (10)

h=1
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0, ) =exp(PL (). . (11)

The third layer integrates the outputs in the second
layer and weights them by the previous output in the
fourth layer. The input and output in the third layer are
defined as

M

Lm =3 P0,,m, .o (12)
m=1

Q0; () = (-0 ), L (13)

where “I5(0) = 1.0 for the initial state.

The fourth layer receives the integrated outputs of units
in the third layer. The relationship between the input and
the output in the fourth layer is defined as

K

Orm) =Y Yoy m,. . (14)
k=1
@
I
(4)0k(n) = C—KK”_)_ ........... 15
S 3
c'=1 k'=1

The unit in the fifth layer integrates the output of units
in the fourth layer. The input and the output in the fifth
layer are defined as

Orm)y =3 Yoim), ... (16)
k=1
OOy =rmy. ... ... (17

The output of R-LLGMN ®0%n) indicates the a pos-
teriori probability of the input pattern x(n) for the class
¢, which corresponds to the physical and mental condi-
tion. Note that, HMM is incorporated into this network
through learning only the weight coefficient wj 4, .

As an energy function J for the network, we use

N C

J==y D T(n)log®0(m) . . . ... ... (18)

n=1 c=1

where T{n) = 1 is the teacher signal for the particular
class ¢ and T(n) = O for all the other classes, and N
indicates the number of learning samples. The learning is
conducted to minimize this energy function, that is, to
maximize the likelihood function.

We use the BPTT algorithm™ to modify the weight

coefficients w x5, because of the recurrent connections
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between the third layer and the fourth layer. The time
history of the input pattern is considered from the pre-
vious N; samples. Moreover the terminal attractor'® is
incorporated into BPTT to regulate the convergence time
of the learning process.

3. Experiments

We conducted experiments to examine the modeling
ability of the proposed method. Each subject was sub-
jected to a mental workload as an example of mental
stress, and the proposed method modeled a mapping be-
tween the subjective rating scores of their mental stress
and HRV patterns. Changes of HRV patterns that were
influenced by the same workload were evaluated based -
on this map.

A Experimental conditions

Experiments were conducted with five subjects
(male/female=4/1, age = 31.6 = 5.5). We explained the
experimental protocol and obtained written consents from
all subjects. The experimental setup is shown in Fig.3(a).
Subjects were seated at a desk, and a color display (15
inch, HMD-A101, Sony Corp.) was set at a distance of
60[cm] from their eyes. The ECG signal was measured
based on the bipolar derivation method. Integer numerals
were displayed for 2.0[sec] in the center of the display,
and subjects were asked to input the same number after
the number faded out. The font size of the displayed
numbers was 54[point], and a numerical pad on the key-
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Fig. 4. An example of the evaluation results.

board was used for the input. During experiments, there
was no indication of the subject’s respiration, and changes
of HRV pattern, which were influenced by the respiration,
were regarded as the individual features and used for
modeling. This method is suitable for a monitoring sys-
tem in the home environment because we do not have to
be concerned about respiration.

The time schedule is shown in Fig.3(b). Subjects were
asked to take a rest for 5.0[min], after which sessions 1~9
were executed. Each session consisted of the input task
(2.0[min]) and the subjective evaluation (about 30.0[sec]).
The digit of the displayed numbers was equal to the ses-
sion number, and the number was displayed for 2.0[sec].
The subjective evaluation of the mental stress was ex-
pressed in five levels, where Level 5 indicated the most
stressful conditions. Each subject executed two sets of
this time schedule. The pattern extracted in the first set
was used as the modeling data, and one pattern in the
second set was used as the evaluation data.

The parameters in the feature extraction part were set
to I=5.0[sec], 1,=5.0fsec], C=0.005{Hz], §=8, D=10. The
scale parameter of W, which selects the extracting fre-
quency range, was L=160, where /=159, /=131, and /=0
corresponded to 0.01[Hz}], 0.25[Hz}, and 0.5[Hz}. In the
modeling part, the number of output units corresponded
to one of the stress levels. There were N=180(20 in each
session) samples for modeling. The time history of the
input pattern was considered from the previous N=5 sam-
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ples in BPTT.

B Experimental results

Figure 4 shows an example of the experimental result,
showing digits of the displayed numbers (session num-
bers), the HRV signal, WT of the HRV signal, input sig-
nals of R-LLGMN, subjective rating scores, mean values
of the estimated scores, standard deviations of the esti-
mated scores, and rates of correct answer. WT of the HRV
signal is darkened as its power increases. The mean val-
ues and the standard deviations of the estimated scores
are calculated for 10 randomly chosen initial weight co-
efficients. :

Our proposed method estimated the gradual increase
of the mental stress successfully, though the estimated
scores increased earlier than the subjective rating scores.
The standard deviations of the estimated scores were
quite small. The correlation coefficient between subjec-
tive rating scores and the estimated scores was 0.89. The
estimation accuracy decreased remarkably when "9" was
displayed. In this case, the task difficulty seemed to satu-
rate the subject’s ability.

Next, the same experiment was conducted for five sub-
jects. The results of Subject E correspond to Fig4. To
compare our method with previous methods, we exam-
ined CVz.gx LF/HF that were frequently used in a clinic
and the previous research. Table 1 shows the results. We
calculated these values every period where the subjective
rating score was the same level. The mean values and the
standard deviations are shown for LF/HE

In this experiment, we cannot see a correlation be-
tween the HRV patterns and CVz.z LF/HF, so it is diffi-
cult to find the mapping between these values.

The results evaluated by the proposed method are
shown in Table 2. The results of Subject E correspond to
Fig.4. The table shows the subjective rating scores, esti-
mated scores, and the rates of correct answers for ses-
sions 1~9. We calculated the mean values and the standard
deviations of the estimated scores for 10 initial weight
coefficients.

We see from Table 2 that the changes in the subjective
rating score and the rate of correct answers differed
among individuals. Under such situations, the proposed
method successfully estimated a gradual increase of the
mental stress. The correlation coefficients between sub-
jective rating scores and the estimated scores were (.92
~0.89. The evaluation performance of Subject D de-
creased as shown in Fig.4 (Subject E) during Session 9.

4. Conclusion

We have proposed a method of modeling heart rate
variability. This method extracts the feature patterns of
HRV using WT; R-LLGMN modeled and evaluated these
patterns. In experiments, the subjective rating scores of
the subject’s mental stress were evaluated highly accu-
rately.
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Table 1. Changes of the HRV indices during the experiments.

Subjects Digit 1 2 3 4 35 6 7 8 9
A Subjective rating score 1 1 1 1 2 3 4 5 5
ESm 127 1.091 100] 1.16] 2731 3,121 2951 4.57] 500 Cor=0921
ES g 0441 041 0.00{ 0.53] 064 0.33| 0.32{ 1.24]| 0.00
Rate of correct answer 1.00] 1.00f 1.00] 1.00! 095 0.89] 067 040! 000
B Subjective rating score 1 2 3 3 3 4 4 5 5
ESm 1.23] 1.65] 2.95| 3.00] 225| 3.79| 4.28] 5.00f 500 Cor=0.920
ESsid 0511 0648 021] 0.00; 179, 0.72] 057, 000! 000
Rate of correct answer 1.00| 1.00] 1.00] 1.00] 096| 0.84| 0.78| 0.86] 026
C Subjective rating score 1 2 2 2 3 4 5 5 5
ES o 1000 200! 200/ 200] 3.53] 300 473} 500 3500 Cor=089
ES s1d 0.00| 0.00] 0.00| 0.00] 089 1.42; 068 0.00] 0.00
Rate of correct answer 1.00f 100/ 100 1.00f 096, 082 045! 029 004
D Subjective rating score 1 1 2 3 4 5 5 5 5
ESwm 1.55| 1.01] 1.00] 349| 438] 5.00| 5.00{ 500/ 341 Cor =0.855
ES st 0.891 0.12] 0.00] 049 049] 0.00| 0.00] 0.00] 0.81
Rate of correct answer 1.00] 1.00f 1.00{ 093, 0.78] 040| 0.19{ 0.07] 0.00
E Subjective rating score 1 1 1 2 3 4 5 5 5
ES 1.00] 1.00] 1.00| 2.74] 393! 5.00] 5.00{ 497, 3.00 Cor=0.888
ES sta 0.00] 0.00] 0.00] L12} 025]| 0.00] 0.00] 0.16; 0.00
Rate of correct answer 1.00; 1.00f 1.00] 1.00} 100, 086} 074/ 0.19/ 0.00
ES y; : Mean values of the estimated score
ES g4 © Standard deviations of the estimated score
Cor : Correlation coefficient between subjective rating score and estimated score
Table 2. Evaluation results by the proposed method.
Subjects Subjective rating score 1 2 3 4 S
A CVpr 4.6 4.4 5.2 5.0 4.0
LF/HF 115 £33} 161 56 113 1.0} 154 £24} 11.5% 26
B CVpg 4.2 49 4.7 5.0 4.6
LF/HF 65t 1.5 32+ 08 64 2.6 45 20 46+ 1.7
C CVix 6.9 8.3 6.1 6.2 6.6
LF/HF 363 = 43] 804137} 23.4%13.2] 224 £+ 11| 411101
D CVir 4.1 4.5 3.8 3.6 4.7
LF/HF 334 =84 338+ 42| 225+ 47| 207 43| 300* 3.7
E CVeg 5.3 5.1 4.3 39 5.5
LF/HF 95+ 28 43+ 1.7 8.9+ 03 8.7 1231 190X 6.1
Total CVir 5012 54+ 1.6 48+ 09 47 £ 1.0 51 1.0
LF/HF 194 £ 40] 27.5% 52] 145% 43| 143 =24} 212% 438
Standard deviation of the R-R Intervals
CVpp = > 100%
Mean value of the R-R Intervals
LF/HF LE: Power of low band frequency calculated by the wavelet transform

HEF: Power of high band frequency calculated by the wavelet transform

We hope to evaluate changes in HRV patterns for a long
period based on the proposed method. We will try to
measure the HRV pattern every month and determine
whether the HRV pattern fits the model constructed the
previous month. We may detect unusual physical condi-
tions in this way. The results of the short-period experi-
ments in this paper will be useful for later long-period
experiments. Also, we would like to develop a healthcare
system incorporating the proposed method to help people

lead healthy lives.

A part of this work was supported by the Industrial
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