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M. M. Svinin®*, M. Kaneko®, T. Tsuji®

*Kobe University, Mechanical Engineering Department, Kobe 657, Japan
®Hiroshima University, Industrial and System Engineering Department, Higashi-Hiroshima 739, Japan

Received 23 March 1998

Abstract

This paper deals with the rotational stability of a rigid body under constant contact forces. For this system, the stiffness tensor is
derived, and its basic properties are analyzed. For the gravity-induced stiffness, one condition for stability, formulated in terms of
geometric and gravity centers, is obtained. The internal forces are introduced with the use of a virtual linkage model. Within this
representation, two conditions for stability under internal force loading are formulated in an analytical form. The conditions obtained
are applied to the synthesis of a three-fingered grasp. © 1999 Elsevier Science Ltd. All rights reserved.
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1. Intreduction

One of the fundamental problems in controlling muiti-
fingered hands is the stability of the resulting grasp. In
recent years, the problem has been addressed from differ-
ent points of view, and a number of approaches to define
grasping stability and its relation to concepts such as
grasping form and force closure, have been proposed in
the literature. Good surveys on this topic can be found in
Shimoga (1996) and Walker (1998). This paper addresses
the problem in a somewhat simplified way, dealing only
with the rotational stability of the grasped object.

Basically, the total compliance of an object, grasped by
multiple fingers, C,p;ecr, has two sources:

chject = Cfingers + Cioading {1)

The first one is due to the compliance of the fingers, while
the second is due to the contact force interaction between
the fingers and the object. Roughly, the first term in
Eq. (1) is defined by the transformation of the joint com-
pliance Cjyiqs to the Cartesian level through the finger
Jacobian J. The Cartesian compliance of the fingers,
Ceingers = JCjoumsd ", is symmetric and positive definite
(and therefore stable) as long as the joint compliance
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matrix is stable. On the other hand, the compliance due
to the finger interactions, Cioaging, IS N0t necessarily posit-
ive definite. It depends on the contact force distribution,
and is often the source of grasping instability. This phe-
nomenon is reported by Nguen (1989), Cutkosky and
Kao (1989), and Kaneko et al. {1990), It should be noted
that a similar subject — stability due to internal forces in
mechanisms with closed kinematic chains — is analyzed
by Hanafusa and Adli (1991), and Yi et al. (1991).

One possible approach to provide stable grasping can
be formulated as follows: for a given matrix Cyaging find
out the total finger compliance Cy;qge.s S0 that the object
compliance matrix Copje, is positive definite. Theoret-
ically, this approach can work nicely. However, this is
a case-dependent approach, and there is no systematic
procedure for adjusting the compliance of the fingers to
that of the object.

Another possible solution to the stability problem is
based on decomposition of the total compliance, and
designing the corresponding matrices, Ciipgers and
Cioaaing Separately. Indeed, if they are both stable, then
the resulting compliance will also be stabie. Concep-
tually, this approach is taken in this paper. The compli-
ance of the fingers is not considered at all. The grasp is
considered to be stable if its stiffness matrix is not nega-
tive definite. The reason for taking this view is simple
—even if the contact-force-induced compliance is positive
semi-definite, the resulting compliance of the system can
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Fig. 3. Stretching and compressive forces.

Q(a)'b = a xb. If, however, the object is not at equilib-
rium, K is always asymmetric.

Next, even though K is symmetric for equilibrium, it is
not always and not necessarily positive definite. The
judgment on the positive definiteness of K can be done

easily only for some simple cases of force loading. Con-

sider, for example, the case when all the applied forces are
coplanar to the correspondent vectors p;, as shown in
Fig. 3. Here, {; = k;p; and formula (5) gives

K= Y k{(pTp)l — piol) ™

i=1

As can be seen, K has the structure of the inertia tensor of
a system of points built on the vectors p;, with k; playing
the role of masses. Therefore, if all k; > 0, ie., all the
forces are stretching, K is positive definite and the equi-

- librium is stable. In the opposite case, when all k; < 0, p.e.,
all the forces are compressive, K is negative definite and
the equilibrium is unstable.

However, in the general case, when k; have different
signs or when the applied forces f; are not coplanar
to p;, it is not that easy to make judgment on the
properties of K without direct computations. Hence,
an additional study of the force structure is required.
Finally, please note that the forces dealt with in
this paper are assumed to be constant in the inertial
frame. If they are constant in the body frame, one
can show that K=Q(}7 ,p;xf)=0. Such forces
do not contribute to the rotational stiffness as long as the
body is at equilibrium. :

3. Force decomposition

To establish relationships between the stability and the
force structure, a proper decomposition of the applied
forces is necessary. One possible decomposition is based
on the pseudo-inversion of the grasp matrix. Such a de-
composition, interpreted in terms of the screw theory, has
been given by Kumar and Waldron (1989). Here, the
pseudo-inverse decomposition is presented in a different

Fig. 4. Shift to the geometric center.

form, based on the classical vectorial notation and
changing the reference point 0. ‘

"To facilitate the calculations, the reference point O is
shifted to the geometric center C (Fig. 4) defined by

P =

S| =

o ®)
i=1 .

Introducing the block vectors ®, = { —mg, 0}7 and

f={f], ..., f}}7, one can rewrite the static equations (2)
in the following form:
®, = B,f = B,.B.f ©
where
I O I I
BDC = y BC = 10
Hsz(pa 1 H 'ﬂ(n) 1 S) I

and r; = p; — p.. If n = 3 (n = 2 in the planar case) and
the contact points are not coplanar, B,.B, is a full-rank
decomposition of the grasp matrix B, and, therefore,
B =B}B,".

Note that the symbolic computation of the pseudo-
inverse B = BI(B.BY) ™! is much easier than that for the
original, non-decomposed matrix B,. It is due to the fact
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4. Stability analysis

Having decomposed the applied forces f, one can
decompose the stiffness tensor K = K; + K; into the
gravity-inducing component, Kg, and the internal-
force-inducing component, K;. In what follows, the con-
ditions under which the matrices K; and K; become
positive semi-definite, are established.

4.1. Gravity-induced stiffness

The matrix K¢ can be represented through the geomet-
ric invariants of the grasp, p, and J,. Substituting Eq. (13}
into Eq. (5) and making use of Jabobi’s identity gives

K; = Q'(p.) Q) + Qp){J. — o} (20)

where p,=J.'m,m = —p.xf,f,= —mg and
o = %J.. If the geometric center of the grasp coincides

Fig. 6. Gravitational stability.

with the center of mass (p. = 0), K¢ does not contribute
to the total stiffness. Another particular case of the all-
zero eigenvalues of the matrix Kg is the one where the
object is planar and its plane is orthogonal to the gravity
force.

In the planar case, the stability condition is

K; = plf, > 0 1)

It has the following geometric interpretation: for the no-
internal-force grasp to be stable, the geometric center
p. must be placed above the center of mass of the object
(Fig. 6). :

In the spatial case, however, the judgment on the
eigenvalues of K¢ is not that simple. Inspecting the struc-
ture of K¢, one can show that tr K¢ = 2p7f,. Hence, by
the Routh-Hurwicz criterion the condition (21) is also
necessary for the stability in the spatial case. However,
taken alone it is not sufficient, since the other two condi-
tions of positive definiteness of Kz must be established
and analyzed.

In the general case, to find an interpretation of
the stability conditions for the matrix K; in terms
of the geometric invariants of the grasp is a difficult
problem. Here, only two particular cases, when the
eigenvalues of K; can be identified easily, are con-
sidered.

In the first particular case the vectors p, and f, are
coplanar, i.e., p. = kf.. Under this assumption the second
term in Eq. (20) vanishes and the eigenvalues of K are
defined as follows: A, = 0, 4, 3 = p.f.. Hence, Eq. (21) is

Fig. 7. Regular-polyhedron-type configurations.
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Fig. 8. Three-fingered grasp.

5. Synthesis of a stable grasp

Consider a planar, elliptic object, grasped by a three-
fingered hand. Assume the symmetrical placement of the
second and the third contact points on the object as
shown in Fig. 8. The contact points are defined as
follows: py = {0, — b}, p, = {acosy, bsiny}T, p; =
{—acosy, bsiny}T, where the grasping angle
yit[ — n/2, =/2], and a and b are the lengths of the semi-
axes of the ellipse.

Assume that the gravity center is at the center of the
ellipse. The geometric center of the system of the contact
points is

p. = g {0, 2siny — 1}7 (33)

To satisfy the stability condition (21), the geometric
center should be above the gravity center. This leads to
the following simple condition on the grasping angle:
W > n/6.

Next, consider stability due to the internal forces. The
normal contact forces, directed along the inward nor-
mals, are defined as f;, =£,{0, 1}7, f,, = f*{— bcosy,

—asiny}", £y, =f*{bcosy, —asiny}T, where f¥ =
S/AQ) , and A(Y) = /a®sin 2y + b? cos 2.

Defining the clockwise (at the 2nd point) and counter-
clockwise (at the 3rd point) tangential vectors, the
friction forces can be represented in the following
form: f;,=1{0,0}7, f,,=f*{asing,—bcosy}”, f3 =
f¥{ —asiny, — bcosy}T, where f* = f,/A(}) is the nor-
malized tangential force.

Under the specified contact forces, the moment bal-
ance and the horizontal force balance are always satis-
fied. The static equation for the vertical force balance is
given as

|y = 2f¥asiny + 2f*bcosy (34)

The unilateral constraints on the normal forces are given
by f, = 0 and f, = 0. Hence, the equilibrium region in the

200
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Fig. 9. Normalized rotational stiffness.

plane f,/f,, ¥ is defined as

> w) = — asiny/beosy | (35)

with f,/f, = () defining the line of zero internal force f,,.
The Coulomb friction constraints are given as

— e SSlfa S te (36)

where u, stands for the friction coefficient.
The rotational stiffness of the object can be calculated
by Eq. (6). It is obtained as

= — bf, — 2abf;¥ + 2(a® — b?)siny cos Yf*. 37

Since f, =0 and f, >0, the rotational stiffness is not
positive if the object is a sphere (¢ = b) or if there is
no friction (f* = 0). Substituting Eq. (34) into Eq. (37)
defines '

K = —2ab(1 +siny)f;¥ + 2 cos ¢ {siny(a* — b%)— b*} f*
(38)

as a function of three variables f,f*, and . Basic
features of this function can be inspected by plotting (for
some fixed values of a¢ and b) the normalized stiffness
K = K/f, as a function of the grasping angle i and the
normalized friction force f;/f,. As shown in Fig. 9, it is
a sign-indefinite function having a saddle point in the
origin. '

To obtain the stability conditions in the analytical
form, the following function is introduced:

ab(l + siny)
cos Y{siny(a* — b%) — b*}

Note that f,/f, = uy) defines the line of zero stiffness in
the plane f;/f,, ¥, which is the zero level curve of the

surface K(f/f ¥).
1t follows from Eqs. (35) and (37)~(39) that for a < /2b
the stability area and the equilibrium area have no

) = (39)
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Now, with f,/f, being fixed, one can choose the normal
reaction f, from the desired stiffness K,... It defines

Kaesh ()

b= T ) T acos Y@

~ b¥)siny — b*}
(46)

as a function of the grasping angle, the desired rotational
stiffness, and the friction coefficient.

To complete the synthesis of a stable grasp, it is neces-
sary to define an optimal value of the grasping angle .
The minimum and the maximum grasping angles for
a given friction coefficient u, and a given object shape a,
b, are defined from equation u,() = . Due to possible
errors in realization of the force control schemes, it is
reasonable to set the interval (41) as large as possible.
This corresponds to setting such  that gives minimum
to ().

Solving equation duy)/dyy =0, one can show that
this mimimum is attained under the following optimal
grasping angle:

— 1+ /58 — bHf(@®> — b))
2

(47)

SinYop =

It is interesting to see how the shape of the ellipse
affects ¥, Assume a dimensionless parameter z = b/a.
It can be shown that pu(y,,) is a monotonic function
of z on the interval 0 <z < I/ﬁ. It goes to infinity
as z — l/ﬁ, i€, Yop — /2. In the other limiting case
of z—0, when a»b, pYon) —0. Here, sinyy, =
(—1+ \/5)/2, It is remarkable that in this case the
y coordinate of the 2nd and 3rd contact points divides
the semi-axis b of the ellipse in the golden section ratio
1+ \/3)/2, and the x coordinate of those points
divides the semi-axis a in square of the golden section
ratio. The optimal grasping angle is plotted in Fig. 14.
Grasping configurations corresponding to Yopr are
shown in Fig. 15.
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Fig. 14. Optimal grasping angle.

Fig. 15. Optimal grasping configurations.

6. Conclusions

The problem of the rotational stability of a rigid body
under constant contact forces has been considered in this
paper. The stiffness tensor of the system has been derived,
and its basic properties has been established. One condi-
tion for stability, formulated in terms of the geometric
and gravity centers, has been established for the gravity-
induced stiffness. The internal forces have been introduc-
ed with the use of a virtual linkage model. Within this
representation, two conditions of stable grasping under
the internal forces have been derived in analytical form.
The conditions obtained have been applied to the syn-
thesis of a three-fingered grasp, for which the optimal
grasping configurations and the optimal force distribu-
tion have been found.
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