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Abstract This paper proposes a new method for the dy-
namic control of redundant manipulators via the artificial
potential field approach. In the artificial potential field ap-
proach, the goal is represented by an artificial attractive
potential field and the obstacles by corresponding repulsive
field, so that the trajectory to the target can be associated
with the unique flow-line of the gradient field through the
initial position and can be generated via a flow-line tracking
process. This approach is suitable for real-time motion plan-
ning because of its simplicity and smaller computational
time than other methods based on global information about
the task space. However, little attention has been paid to
the control of the dynamic behavior of the trajectories gen-
erated. The proposed method is based on the artificial po-
tential field approach with a combination of a time-scale
transformation and a time-base generator which works as a
time-scale compressor and can control the dynamic behav-
ior of the robot without any change in the form of the
designed controller itself. It can also be applied to the
dynamic motion planning problem of redundant manip-
ulators. The effectiveness of the proposed method is
verified by computer simulations for a three-joint planar
manipulator.

Key words Artificial potential field approach - Dynamic
control - Redundant manipulator - time-base generator -
Time-scale transformation

Introduction

In the artificial potential field approach (APFA),"™ the goal
is represented by an artificial attractive potential field and
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the obstacles by corresponding repulsive fields, so that the
trajectory to the target can be generated via a flow-line
tracking process taking obstacle avoidance into consider-
ation. This method is often used for the trajectory genera-
tion problem of vehicles and manipulators because of its
simplicity and smaller computational time than other meth-
ods that are based on global information about the task
space. However, little attention has been paid to the control
of the dynamic behavior of the trajectories generated such
as movement time from the initial position to the goal, and
the velocity profile of the trajectory generated. Although
one of the most crucial winning features of the APFA is
real-time applicability, it is difficult to use the generated
trajectory for the control of robots in real time.

To meet the disadvantage mentioned above, Hashimoto
et al.* proposed a method using an electrostatic potential
field and a sliding mode for a manipulator that can regulate
the movement time but not the dynamic behavior of a ro-
bot. Recently, Tsuji et al.>® proposed a method introducing
a time base generator (TBG) into the APFA which can
regulate the movement time and also the velocity profile of
the robot, but cannot be applied to the dynamic control.

Generally, it is harder to develop dynamic control of the
robot than kinematic control because of the existence of a
drift component in the dynamic system. In fact, without
considering the holonomy or nonholonomy of the system,
most previous studies have dealt with the kinematic model
for the trajectory generation problem. However, a few stud-
ies’ have taken account of the dynamics of the robot in the
trajectory path-following problem.

Hollerbach” developed the trajectory time-scaling
method for the torque-limited path-following problem. This
method can lead the end-effector to the goal along the given
path by modifying the movement speed. Sampei and
Furuta® showed that the stability of a system is preserved for
any time-scale transformation as long as the defined new
time never goes backward against the actual time. They
then proposed time-scale transformation for a linearized
nonlinear system. More recently, Tanaka et al.” have devel-
oped the trajectory generation method for the dynamic con-
trol of robots based on the APFA, with a combination of
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time-scale transformation and a time base generator, and
applied it to the dynamic control of a holonomic mobile
robot.

In this paper, we propose a new trajectory generation
method for the dynamic control of redundant manipulators
using Tanaka’s method.” The redundant manipulator has
desirable features that may lead to more dexterity and
versatility in the robot’s motions, for instance, avoiding
obstacles or singular configurations when performing a
given task.'”'? The present method can control the spa-
tiotemporal trajectories of the end-effector with significant
advantages of redundancy.

This paper starts with a section formulating the dynamics
of a redundant manipulator. The next section describes the
general problems of the APFA. Then, the new trajectory
generation method based on the APFA is explained in
detail, and finally, the effectiveness of the proposed method
is shown by computer simulations with a dynamic model of
a redundant manipulator with three joints.

Dynamics of redundant manipulators

The joint space motion equation of an n degree-of-freedom
manipulator whose end-effector is operating in the m
dimensional task space can be expressed as

M(q)i + h(g. 4) + &(q) =7 ®

where g € " is the joint angle vector, M{(q) € "™ is the
nonsingular inertia matrix, h{gq, §) € N" is the ponlinear
term including the joint torque due to the Coriolis and
centrifugal force, g(g) e R" is the joint torque due to grav-
ity, and r ¢ " is the joint torque vector. The dynamics of
the end-effector can also be written in the operational space

(12

as

MX(Q)‘X + h.r(q7 Q) + gx(‘]) =F ?)

where x &€ " is the current end-effector position, F e f" is
the end-effector force vector, M,(q) = (IM (@)J) ' ¢
R™ is the operational space kinetic energy matrix, J &
M is the Jacobian matrix, and

h(q, q) =1 h(q, §) — M.(q)Jq
g.(q) =T g(q)
J= (Mx(q)JM‘l(q))T

When a manipulator possesses an extra degree of free-
dom to execute a given task, i.e., m < n, the joint torque
of redundant manipulators can be decomposed into two
elements: the joint torque 7,4, € A" to operate the
end-effector, and the joint torque 7, € " to control the
additional freedom of joint motion with the redundancy of
a manipulator. In this case, there exists the following force/
torque relationship between the joint torque r.4,,,, and the
operational force F:

&)

. ¥F
teffecrar - J F

However, the joint torque r,,, always satisfies the condi-
tion' given by
jT rjaim =0 (4)
This equation implies that the joint torque 7, must lie in
the null space associated with the matrix J' so as not to
produce any acceleration at the end-effector. The general
solution 7,,,, for this condition is given by

= GT* %)

where r* is an arbitrary » dimensional vector, and G = I —
J'J" e M7 defines the mapping to the null space associated
with J”. Consequently, the total joint torque 7 for a redun-
dant manipulator can be recomposed of Eqgs. 3 and 5 as
follows:

T

Joint

T = teffecmr + tjofm

’ (6)
=J' F+ Gr*

In this paper, we explain the feedback control law F for
operating the end-effector and r* for controlling an addi-
tional freedom of motion of a manipulator. The total joint
torque composed of these designed controllers allows a
redundant manipulator to perform a given task by utilizing
arm redundancy efficiently.

Artificial potential field approach

In this section, we attempt to design the feedback control
laws F in order to lead the end-effector to the target posi-
tion and 7* in order to control the extra joint motion of
redundant manipulators.

Here, we define the potential function with quadratic
form Vg, to derive the feedback controller F as

Viogector = %—(x* - xfr Ki{x* —x) + %xTsz (7
where x* denotes the target position of the end-effector,
and K; = diag.(kl, k;, . . ., k) under k,, > 0 (i = 1,2). When
we design the feedback control law F based on the potential
function V4, as

F=-M(q)K;'{Ki(x —x*) + %} + h(q, ) + g.(q) (8

the time-derivative of the potential function Vg, vields

= =0 9)
with the operational space dynamic Eq. 2. Z,fmm is always
nonincreasing except ai the equilibrium point. It follows
that the end-effector can reach the target position by means
of the joint torque 7,4, in Eq. 3, which is equivalent to the
derived control law F given in Eq. 8. For a redundant ma-
nipulator, however, the joints may continue to move al-
though the end-effector arrives at the target position, since
designed controller F cannot control the extra freedom of
joint motion directly. For this problem, we utilize the null

Veffecmr



space on the force/torque transformation to control the
internal motion.

Here, we define the potential function V,,,, in order to
design the feedback controller 7* which can utilize the inter-

nal motion of a redundant manipulator as

V‘oint =

o = 4" M(g)d + <(1)0(q) (10)

2
where %{f) is a positive nonincreasing continuous function
under =(z) = 0.0 at the specified time £, and Q(q) is a
differentiable potential function. The first term on the right-
hand side of Eq. 10 is used in order to dampen the redun-
dant joint motion when the end-effector arrives at the goal,
and the second one is used to realize the desired posture of
the manipulator g* corresponding to the minimum of the
potential function Q{(g). It should be noted that the poten-
tial function Q(q) can be maximized under the negative
nondecreasing coefficient function «(r). If we design the
feedback control law T based on the potential function V,,,,
as

v=-¢+g(q) - K(t)aQ (11)

o
the time-derivative of the potential function V,,,, yields

View = 4l + k(r)Q(q) = 0 (12)
using the joint space motion Eq. 1 and the definition that
%(¢) is nonincreasing in the actual time scale #. Selecting the
designed joint torque 7 in Eq. 11 as 7%, we can obtain
the new feedback controller z,,, to control the internal
motion without altering the generating trajectory of the
end-effector.

By means of the total feedback control law 7 given in Eq.
6, composed of the designed controller F (Eq. 8) and =¥
(Eq. 11), the end-effector can reach the target position, and
also the desired posture may be realized through an optimi-
zation procedure of the potential function Q(q). Figure 1
shows the block diagram of this feedback system of the
redundant manipulator.

Moreover, substituting Eq. 8 into Eq. 2, we can derive
the following linear damped system:
F+ K+ KK (x—x%) =0 (13)
Obviously, the system of the manipulator in the operational
space in Eq. 2 is asymptotically stable to the equilibrium

Coordinate transformation ](————-—-
x*
<} End-effector ]

94. O3>| fecdback controller 94

[Maniputaio—4>
Joint
I) feedback controller 7

Fig. 1 Block diagram of the feedback control system for a redundant
manipulator
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point x* by means of the designed feedback controller F
given in Eq. 8. Following the above discussion, we can con-
clude that it is impossible to regulate the convergence time
and the dynamic behavior of the end-effector as hoped.’

APFA with time scaling

Generally, the stability and dynamic property of a system
do not change in any time scale that is a strictly monotone
increasing function with respect to the actual time.® This
indicates that we can design the feedback coatrol law to
make the original system converge to the equilibrium point
at finite time #; as long as the asymptotic stabilizer for
the system in the new time scale, where infinite time
corresponds to ¢ in actual time, is found.

In this section, we present details of the proposed
method based on the APFA combined with the time-scale
transformation.

Virtual time s and TBG

The relationship between actual time, ¢, and virtual time, s,
is given by

ds
— =alt 14
— = alt) (14)
where the continuous function a(f), called the time-scale
function,® is defined as follows:

(15)

where p is a positive constant and &(¢) is a nonincreasing
function called the time base generator (TBG)*® which gen-
erates a bell-shaped velocity profile satisfying £(0) = 1 and
&(t) = 0 with the convergence time #. The dynamics of £ is
defined as

E= (g1 -g) (16)

where y is a positive constant that can control the conver-
gence time ¢, and B is also a positive constant, 0 < § < 1.0,
which determines the behavior of £. The convergence time
1, can be calculated with the gamma function I") as

joifg_z r’e-p
L g yI(2-28)

Thus, the system converges to the equilibrium point & = 0in
the finite time ¢, if the parameter y is chosen as

r*1-p
Y= LO-h) (18)
Figure 2 show the time histories of £ and £ depending on

convergence time ¢ = 1.0, 3.0, 5.0(s) under the parameter
B =105

(17)

—_ t{
=} dt=
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Fig. 2 Time history of £ and £ for different prespecified times

From Egs. 14 and 15, the virtual time s can be repre-
sented with respect to £ as

s= [t
It is obvious that the virtual time s given in Eq. 19
never goes backward against the actual time 1. We take

this virtual time s as a new time scale in time-scale
transformation.

dt = ~pln§( ) (19)

Time-scaling of the system

We can rewrite the two dynamic equations in the joint space
(Eq. 1) and in the operational space (Eq. 2} into the follow-
ing linear system with the state variable Z = (x, g, ¥, §) as

(o -
F, = M;'(g{{F - (h.(q, ) + 2.(9))} (21)
7, = M7 (g)fr - (k(g. 9) + 2(9))} @)

where 0 € R™HX) is the zero matrix and J e SRU9xewn)
is the unit matrix.

The system given in Eq. 20 can be rewritten in the virtual
time scale s as

el e
where

. .\
W = (. Yo, Y5 i) = [x, 7 -&% -(%] 4)

=il o

As previously defined in the relationship between actual
time and virtual time, the stability of the new system given
in Eq. 23 is the same as that of the original system in actual
time.® Hence, there exists a feedback control law to stabilize
the new system asymptotically.

Design of the feedback control law

In this subsection, we design the feedback control law with
the APFA to stabilize the new system given in Eq. 23 in the
virtual time scale.

We can define the potential function with the quadratic
form V¥, for the control of the end-effector to the target
position in the virtual time scale as

V'e};‘ector = é"(tﬁx* - 1}:}1) TKl(llijl* - 1}/)!) + %‘?‘é’; K23/)3 (27)

If we design the feedback control law F, based on V¥, as

F, = -K; {K1(1/)1 - ) + T/’%} (28)
the time-derivative of the potential function V%, in the
new time scale yields

d

d
E;I/eﬁ‘erzor 3 {Kx(% - E}’)l*) + K, "}fé‘}

ds (29)

Tl =0

By inverse transformation of time scale from the virtual
time s to the actual time ¢ for the controller F, with Egs. 23
and 25, the controller F, in actual time is derived as

F, = ~a’(1)K; ' K(x — x*) - {a(t)K;]1 - %}x (30)

From Egs. 21 and 30, we can obtain the feedback control
law F¥ for control of the dynamic behavior of the end-
effector as

F' =M/(q)F, + h.(q. 4) + g.(q) GD

The end-effector of the manipulator is controlled to the
target position at the convergence time ¢ by means of the
joint torque 7, fectors which is equivalent to the feedback con-
trol law F¥ given in Eq. 31.

On the other hand, we can define the potential function

V¥ . to derive the feedback controller 7, in virtual time s as

Jjoint

V‘j’ m

Jjoint ?f)f K3?104 + g(S)Qs(zf&) (32) ,

[ Y



where K, = diag.(k3, k3, . . ., k) under k&, = 0, Q,(v,) is the
differentiable potential function in the virtual time scale,
and {(s) is a positive nonincreasing scalar function. It
should be noted that the potential function Q,(1,) can be
maximized under the negative nondecreasing coefficient
function £(s). Differentiating the potential function Q(v,)
with respect to the virtual time s, we get
aQs T aQs

0, _(aw)
s s ) Yo

With the new system Eq. 23 and Eq. 33, the time-derivative
of the potential function V¥, in virtual time s yields

Jjoint

(33)

i ]omt 1/}4 {K'}": + g( )aQs} + E%QQS(WZ) (34)

ds oy,

If we define the feedback controller z, with the non-
increasing scalar function {(s) in the new time scale as

- 90,
T, = —K; + 35
o+ 922 G5)
Eq. 34 can be calculated as
d b 2 dg s
Ly, = ol + o )= 0 6o

This indicates that the potential function V%, is stabilized
to the equilibrium point by means of the feedback control-
ler 7, in the virtual time scale.

Here, we define the nonincreasing function (s} in the

new time scale as

@37

Through the inverse time-scale transformation from
virtual time to actual time for the controller z, with Eqs. 23
and 26, the feedback control law 7, in actual time is derived
as

K12
"o

where o is a positive constant. From Egs. 22 and 38, we can
derive the feedback controller ¥ as

™ = M(q)r, + h(g, §) + £(q)

When the joint torque 77 (Eq. 39) is selected as ¥, we can
obtain the joint torque 7, (Eq. 5) to control the internal
motion of the redundant manipulator.

The total feedback control law 7 (Eq. 6), composed of
the designed controller given in Egs. 31 and 39, can lead the
end-effector to the target position at the specified time ¢;
and may attain the desired posture by utilizing the redun-
dancy of the manipulator effectively without altering the
configuration of the end-effector.

(38)

= o’ - 40k —agion

(39)
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Dynamic behavior of the end effector

In this section, the dynamic behavior of the end-effector
controlled by the total joint torque feedback controller ¢
(above) is analyzed. To simplify the discussion, the target
position for the end-effector is set at the origin in the opera-
tional space. Substituting the feedback control law F¥ for
the end-effector (Eq. 31) into the original linear system
equation given in Eq. 20, we have the second-order differ-
ential equation

VA . -
= —pz(—g—) K;'K.x+ {(p - 1)% + %}x

Here, we first analyze the behavior of the end-effector on
the x coordinate. From Eq. 40, the following Euler’s equa-
tion with respect to x and & can be derived:

(40)

2 dx _
d&’
Since the nonincreasing function & converges to zero at
finite time ¢, the necessary and sufficient condition to con-
verge x, %, and X to zero at the specified time # is given as
follows according to the discriminant of the characteristic
: ki
polynomial D, = 4—]?
1

Zx=0

(b1 + £

5 I

(41)

— 1 of Eq. 41:
(1) if D, = 0 then p > 4(1 — /5')
The dynamic behavior of the other state variables in the
operational space can be analyzed in the same manner.

It can be proven that the feedback control law F*
(Eq. 31) of the proposed method can regulate the dynamic

behavior of the end-effector and the convergence time to
reach the goal.

(Z)th < Othenp > _(

Computer simulations

The proposed trajectory generation method was applied to
a redundant manipulator. Figure 3 shows the simulation
results with a three-joint planar manipulator. The initi%I
posture of the manipulator is (0} = (n, ——171%5, ~§)
(rad), and the target position of the end-effector is x* =
(0.0, 1.5)™ (m) with convergence time £, = 5.0 (s) under p =
8.0,a = 1.0.

The gain matrices K; (i = 1, 2, 3) in the potential func-
tions are set at K, = diag.(0.25, 0.25) (N/m), K, = diag.(1.0,
1.0) (Ns/m), and K; = diag.(1.0, 1.0, 1.0} (Nm/(rad/s)), re-
spectively. We used the Appel method for the manipulator
dyamics” and the link parameters of the manipulator, as
shown in Table 1.
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Ls
x[m]}

(a) Case 1

Fig. 3 Changes in the generated end-effector trajectories with different positive functions Q,(q) (i = 1, 2, 3)

Table 1 Link parameters of a three-joint planar manipulator

Link 1 Link 2 Link 3
Length (m) 1.0 1.5 0.5
Mass (kg) 0.8 1.2 0.4
Center of mass (m) 0.4 0.6 0.25
Moment of inertia (kgm®) 0.06666 0.22500 0.00833

Figure 3a shows the generated trajectory with the poten-
tial function Q(q) set at

Ql(Q) =0

which means that arm redundancy is not utilized. On the
other hand, the joint angle control of the first joint and
maximization of the manipulability' is considered as a
subtask in Fig. 3b,c. In these cases, the potential functions

Q(q) are given as

0.(a) = 2{a* — )]

Os(q) = VdetJJ"

where the target angle of the first joint g% is specified as

(42)

(43)

(44)

gF = 5?7[ (rad). For the maximization of Q,(q), we use the

negative nondecreasing function C(s):

25
s(s)= —ae * (45)
instead of Eq. 37.

It can be seen that the generated trajectories are influ-
enced by the corresponding potential function Q(q) defined
above. In Fig. 3a, it can be seen that the third joint of the
manipulator is outstretched while the end-effector reaches
the target position.

In contrast, the end-effector reaches the target position
without any singular configurations by utilizing the redun-
dancy control of the manipulator corresponding to local
optimization of the potential functions Q(q) in Fig. 3b,c.

L5 -15 -1.0

1.5

x [m] x[m]

(b) Case?2 (c) Case3
04 |

o3t LR N

E O Case 1

s 02 __—" — — —Case2

0701 =< Case 3

2
Time [s]
®)

Fig. 4 Time histories of the positive function Q(g) (i = 1, 2, 3)

Figure 4 shows the time histories of Q,(g) and Q,(g). It can
be seen that each potential function in Fig. 3b,c is optimized
much better than in other cases.

Figure 5 shows the time history of the end-effector posi-
tion x, velocity ¥, and the squared sum of the joint angular
velocity. It should be noted that all generated trajectories of
the end-effector in Fig. 3 completely coincide with the one
trajectory depicted in Fig. Sa. It can also be seen that the
end-effector reached the target position via the smooth tra-
jectory, and that the joints of the manipulator do not move
after the specified time ¢, = 5.0 (s) in all cases.

Conclusions

In this paper, a new trajectory generation method for a
dynamic model of redundant manipulators using the con-
cept of the APFA and the time-scale transformation has
been presented. We have developed a control strategy for
the redundant manipulators that allows the achievement of
performance with each redundancy. We also analyzed the
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Time [s}]
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Fig. 5 Time histories of the end-effector position, velocity, and squared
sum of joint velocities

dynamic behavior of the end-effector mathematically, and
derived the necessary and sufficient conditions to reach the
target point at the specified time under the proposed con-
trol law. In simulation results with a three-joint planar ma-
nipulator, the effectiveness of the proposed method was
ascertained. Since the proposed method can specify the
necessary time for the robots to reach the goal, it may be
useful for time-scheduling problems for a robot or the syn-
chronous control of multiple robots.

Future research will be directed to developing a method
that can be applied to a torque-limited trajectory generation
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problem, and can also regulate the dynamic behavior of
joints.
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