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A Log-Linearized Gaussian Mixture Network and
Its Application to EEG Pattern Classification
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Abstract—The present paper proposes a new probabilistic
neural network (NN) that can estimate a posteriori probability
for a pattern classification problem. The structure of the proposed
network is based on a statistical model composed by a mixture
of log-linearized Gaussian components. However, the forward
calculation and the backward learning rule can be defined in the
same manner as the error backpropagation NN. In this paper, the
proposed network is applied to the electroencephalogram (EEG)
pattern classification problem. In the experiments, two types of a
photic stimulation, which are caused by eye opening/closing and
artificial light, are used to collect the data to be classified. It is
shown that the EEG signals can be classified successfully and
that the classification rates change depending on the number of
training data and the dimension of the feature vectors.

Index Terms— Electroencephalography, feedforward neural
networks, pattern classification, recurrent nerual networks.

I. INTRODUCTION

A N electroencephalogram (EEG) signal pattern changes
depending on external or internal factors, such as photic

stimulation, auditory stimulation, and intentions of move-
ments. These factors may be used as an interface in virtual
reality and teleoperation devices, or as a communication tool
for handicapped persons, if the operator’s intended movement
can be estimated from the EEG pattern.

Until now, some investigations of EEG pattern classification
using backpropagation neural networks (NN’s) have been
carried out [1], [2]. Most of them, however, dealt with research
on an automatic diagnosis in a clinic, and only few studies
were concerned with developing a new interface tool [3].

The NN based on the error backpropagation learning [4]
have been frequently employed in various fields, such as
pattern classification and learning control. These NN’s can
represent any nonlinear mapping between input and output
patterns. In case of the pattern classification of unclear EEG
signals using backpropagation NN’s, the networks need a large
number of training data, learning iterations, and a large scale of
structure. Also, it is very difficult to attain high classification
performance.

In order to improve the generalization ability of the NN’s,
the present paper proposes a new type of the feedforward
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probabilistic NN based on the mixture model and the log-linear
model of the probability density function (pdf).

Generally, an input for a pattern classification problem can
be considered as a stochastic variable with a certain distri-
bution. In this case, the pattern classification problem usually
reduces to the estimation problem of the pdf since the classifi-
cation can be performed according to the Bayes’ rule ifa pos-
teriori probability of the input pattern is obtained accurately.

There are two approaches for estimation of the pdf: paramet-
ric and nonparametric approaches. In the parametric approach,
a specific type of the pdf is assumed. Then the problem reduces
to the parameter estimation of the assumed pdf. Linking
this approach to the NN’s, Bridle [5] proposed a method
that estimates parameters of the pdf as synaptic weights of
an NN by assuming the normal distribution for each event.
Although the method can estimate the pdf from small sample
size data, the discrimination ability considerably decreases
when complete knowledge of the pdf is lacking. On the
other hand, Specht [6] proposed a general regression NN
that computes a pdf based on the Parzen window estimation.
Nakagawa and Ono [7] showed that the pdf and thea posteriori
probability can be estimated from sampled data using the
vector quantization and the radial basis function network.
These methods are based on the nonparametric approach in
which the pdf is estimated by making a multidimensional
histogram so that accurate estimation of the pdf requires a
large number of sampled data.

Tråvén [8] proposed an NN based on the semiparametric
estimation of the pdf, which has a flexible structure to represent
any distribution and includes a set of parameters of the specific
distribution, and applied his method to a speech recognition
problem of 18 Swedish consonants. The mixture model of
pdf is a key element of the semiparametric method, which
approximates an unknown distribution by the weighted sum of
a finite number of component densities. The Gaussian mixture
model (GMM) using Gaussian component densities has been
often used in tandem with NN’s: Tråvén [8], Perlovsky and
McManus [9], Tsujiet al.[10], Lee and Shimoji [11], and Streit
and Luginbuhl [12]. For example, Perlovsky and McManus
replaced each component of the GMM with units of the NN,
and it was shown that the parameters of the GMM can be
estimated through learning and the pdf can be approximated
accurately enough. Tsujiet al. [10] performed the EMG pattern
classification using their network. The six motions of forearm
and hand were classified using the EMG signals measured
from four pairs of electrodes. Also, Perlovsky and McManus
[9], Lee and Simoji [11], and Streit and Luginbuhl [12] carried
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out the simulation experiments that need complicated decision
region boundaries, and the high classification performance
were achieved.

However, most of these methods only exploited iterative
procedure of the maximum likelihood estimation with forward
computation of thea posteriori probability. As such, the
classification ability of the proposed networks was limited to
the same level of the GMM. If the number of components
increases, the network needs a lot of sample data to estimate
the GMM parameters, such as mixture coefficients, mean
values, and standard deviations. Therefore, the classification
ability often decreases for a high-dimensional classification
problem. Also, Lee and Simoji [11] pointed out the local
minima problem in the network learning.

On the other hand, Jordan and Jacobs [13] proposed the
hierarchical mixture of expert (HME) that incorporated a
generalized linear model in the NN, and they applied it to
a control simulation of a four-joint robot arm moving in
three-dimensional (3-D) space. The generalized linear model
was defined by Nelder and Wedderburn [14]. It includes a
large class of useful statistical models, in which the dependent
variables are distributed according to some exponential family
and can be made linear by a monotonous and differentiable
transformation. Using the generalized linear model, the HME
consists of two kinds of subnetworks: expert and gating
networks. The expert network extracts characteristics of the
sampled data depending on a specific part of the input vector
space. Outputs from all expert networks are integrated through
the mixture coefficients regulated by the gating networks.
By introducing the gating networks, the internal structure
of the HME becomes hierarchical. It includes much more
parameters than the ones of the GMM, which may complicate
the learning algorithm and lead to the loss of simplicity of the
NN model.

The present paper proposes a new type of the feedforward
probabilistic NN for pattern classification problems. The NN
is based on the GMM and the log-linear model of the pdf.
By applying the log-linear model to a product of the mixture
coefficient and the mixture component of the GMM, the
semiparametric model of the pdf can be incorporated into the
feedforward NN and a simple learning algorithm based on the
backpropagation is still applicable.

In the proposed network, the weight coefficients regulated
in the learning process correspond to the parameters of the log-
linearized GMM (LLGMN) that are the nonlinear combination
of the GMM parameters, such as the mixture coefficients, mean
values, and standard deviations of each component. The weight
coefficient has no longer restricted range like a limitation of
the statistical parameters included in the GMM: for instance,
standard deviation must be positive. Therefore, the represen-
tation ability of the proposed network should be higher than
that of the GMM. This is a distinctive feature of the proposed
network, and it can be expected to achieve higher classification
performance than the ones of previous methods. Also, the
network’s parameters, such as the activation function of each
unit and a number of layers and units, can be determined by
the corresponding structure of the GMM incorporated into
the network.

This paper is organized as follows. The LLGMN and trans-
formation of this model to the NN are explained in Sections II
and III. The classification ability is evaluated by simulations
in Section IV. The proposed network is applied to the EEG
pattern classification problem in Section V. In Section V,
neural filters having a recurrent structure are connected to the
proposed network to smooth a variability of thea posteriori
probabilities. It is shown that the EEG signals can be classified
successfully. Finally, Section VI concludes the paper.

II. L OG-LINEARIZED GMM

A. Gaussian Mixture Model

In the GMM, a pdf is represented by the weighted sum of a
finite number of components with Gaussian densities. Then the
pdf estimation problem reduces to estimation of the parameters
included in each component. Here, a pdf of the feature
vector is represented by GMM with classes

(1)

(2)

(3)

where is the -dimensional Gaussian
distribution. denotes the number of com-
ponents of the class denotes the mixture coefficient
or the mixing proportion of each component ; and

and represent, respectively, the
mean vector and covariance matrix of each component .
Here, stands for the matrix determinant.

Now, let us briefly discuss the problem of classification of
the observed vector into one of the classes. The Bayes’
rule determines a specific class ifa posteriori probability of
the vector belonging to the class is larger than the ones of
the other classes. Using the GMM, thea posterioriprobability

is given as

(4)

where is a priori probability of the class and the
component , which corresponds to the mixing coefficient

; and is the pdf of agreed upon the class
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and the component . Then, using (1), thea posteriori
probability, can be expressed as

(5)

In the GMM, the pdf is approximated by the weighted sum
of the Gaussian component.

B. Log-Linearization

Using the mean vector and
the inverse of the covariance matrix , the
numerator of the right side of (5) can be represented as

(6)

where is the Kronecker delta: when and
when .

Let us linearize the right side of (6). Taking logarithm of
(6), we get

(7)

where and are defined as

(8)

(9)

(10)

and the dimension is defined as .
We can see that can be expressed as the product of
the coefficient vector and the modified input vector

, where the element of the vector is a
nonlinear combination of the GMM parameters, such as the
mixture coefficients, mean values, and standard deviations of
the sample data, and the modified input vectorincludes the
product of the elements of the input feature vector.

By regarding the coefficient vector as the weight
coefficients, the GMM can be incorporated as the network
structure. However, the definition of (9) indicates
that each element of is constrained by the statistical
properties of the parameter . This constraint may cause
a difficult problem in the learning procedure: how to satisfy the
constraints during the learning of the weight coefficients. In
order to remove this difficulty, the new variable and the
new coefficient vector are introduced in this paper as

(11)

where the weight coefficient is defined as the differ-
ence between and , and . Owing
to this transformation, the weight coefficient can have
any real number, so that there are no constraints in the learning
procedure. Note that this transformation does not result any
loss of information in spite of since the variable

in (7) is redundant because of
. Then thea posteriori probability of (5)

can be computed as

(12)

By taking the logarithm of each pdf and using the weight
coefficient vector , the a posteriori probability can be
expressed with the use of the variable . Note that
is the linear sum of the modified input vector and the
coefficient vector . In this paper, coefficient vector

is used as the weight vector and is modified through
learning using the teacher vector. Many parameters of the
GMM, such as the mixing coefficient , the mean vector

, and the covariance matrix , are replaced by
arbitrary parameters . Owing to this replacement, the
network can learn over the structure of the GMM.

It can be seen that, if the number of components for
each class is given adequately, the elements of the input vector

and the weight vector are determined automatically
in correspondence to the characteristics of the pdf. The number
of components can be determined arbitrarily, or based on the
information on the pdf of the sample data. In the next section,
the LLGMN is developed as a feedforward NN.

III. NN M ODEL

A. Network Architecture

The structure of the NN we use in our study is shown in
Fig. 1. The network is of feedforward type and contains three
layers. First, the input feature vector is preprocessed
and converted into the modified input vector accord-
ing to (8). The first layer consists of units corresponding
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Fig. 1. Structure of an LLGMN.

to the dimension of , and the identity function is used for
activation of each unit. The relationship between input and
output of each unit in the first layer is defined as

(13)

(14)

where and denote the input and the output,
respectively, of the th unit in the first layer.

The second layer consists of the same number of units as
the total component number of the GMM . Each
unit receives the output of the first layer weighted by the
coefficient and outputs thea posteriori probability of
each component according to (12). The input to the unit
in the second layer and the output are defined
as

(15)

(16)

where . It should be noted that
(16) can be considered as a kind of the generalized sigmoid
functions.

Finally, the third layer consists of units corresponding to
the number of classes and outputs thea posterioriprobability
of the class . The unit integrates the outputs
of units in the second layer. The
relationship between the input and the output is defined as

(17)

(18)

In the LLGMN defined above, thea posteriori probability
of each class is defined as outputs of the last layer. Note that,
the log-linearized Gaussian mixture structure is incorporated
in the network through learning only the weight coefficient

.

B. Learning Rule

Now, let us consider the supervised learning with the teacher
vector for the th input

vector . When the teacher provides perfect classification,
for the particular class and for all the

other classes. Using thea posteriori probability ,
the probability that the teacher vector is observed for the
input vector is given by

(19)

The network is trained using a given set ofdata
. Using the training data, a log-likelihood function

can be derived from (18) and (19) as

(20)

where the th output of the LLGMN corresponds to
. As an energy function for the network, we use

(21)

and the learning is performed to minimize it, that is, to
maximize the likelihood. For , the weight modification

of the corresponding weight
is defined as

(22)

in a sequential learning scheme, and

(23)

in a collective learning scheme. Here, is the learning rate
and the partial derivative in (24) and (25) can be obtained using
the chain rule in the same manner as the error backpropagation
rule [4]

(24)
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If the teacher signal for each component is available, the partial
derivative of (24) can be replaced as

(25)

where is the teacher signal for the component .

Note that if the sample belongs to the

component and , otherwise. In the pattern
classification problems, the teacher signal usually defines
assignment of different classes. It can be seen from the learning
rule (24) that the teacher signals given for the classes are
propagated backward into each component according to the
ratio of thea posterioriprobability of each component

to thea posterioriprobability of the class .
The learning rule derived in this paper can be applied

using, not only the discrete teacher signal of , but the
probabilistic or fuzzy teacher signal that takes continuous
values of . It should be noted that the conditions of

and must be held. Now, when
the teacher signal vector and the output vector

of the LLGMN are given, the
energy function for learning is changed as

(26)

where , which arises here as a difference between
and , was introduced by Kullback and Leibler as

a measure of directed divergence between two probability
distributions [15]. We have with equality if, and only if,

for all .
Note that the first term in (26) is constant. Thus, the second

term should be minimized to make close to . Since
the second term is equal to the energy functionof (21), the
learning rules (22)–(25) derived for the perfect teacher signal
also minimize the Kullback information.

IV. SIMULATION EXPERIMENTS

A. Generalization Ability

To compare the generalization ability of the LLGMN with
that of the error backpropagation NN (BPN), pattern classifica-
tion experiments are carried out using two-dimensional (2-D)

TABLE I
PARAMETERS OF THEGAUSSIAN MIXTURE MODEL USED IN THE EXPERIMENTS

Fig. 2. Effect of the number of training data on classification ability.

data for two classes . The data are
artificially generated using the Gaussian mixture pdf with two
components . Table I indicates the parameters
used in the GMM.

The LLGMN includes four units in the second layer that
correspond to the total component number, six in the input
layer, and two in the output layer. The BPN includes two
units with the identity activation functions in the input layer;
ten units with the sigmoid functions in each of the two hidden
layers; and two units with the sigmoid functions in the output
layer. Learning for both the networks is carried out until the
energy function of (21) becomes less than 0.1 for all
training data. The teacher signal is given for each class [see
(22) and (24); ]. For the BPN, two outputs are
normalized to make the sum of the outputs one.

Fig. 2 indicates changes in the classification rate as the
number of the training data increases. Both the networks are
trained independently using five sets of the training data. The
numbers of the training data are 10–50. After learning, 2000
data that are not used in learning are prepared for classification.
Then, the ratio of the correct classification to 2000 data (1000
for each class) is computed. In Fig. 2, the mean values and the
standard deviations of the classification rate for ten kinds of
initial weights that are randomly chosen are plotted. Although
both networks can achieve a high classification rate for a large
number of training data, the difference becomes clear as the
number of the training data decreases. The LLGMN keeps the
classification rate high enough even for a small sample size
of the training data, whereas the classification rate of the BPN
significantly decreases.

Decision region boundaries, on which thea posteriori
probabilities of both classes become equal, are shown in Fig. 3.
In the BPN, the decision region boundaries are varied largely
with the number of the training data. On the other hand, similar
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(a)

(b)

Fig. 3. Scatter diagram of training data and decision region boundaries: (a) LLGMN and (b) BPN.

decision region boundaries can be obtained by the LLGMN in
spite of changes in the number of the training data.

B. Representation Ability

The parameters of the GMM, such as the mixing coefficient
, the mean vector , and the covariance matrix

, include several constraints. For example, the covari-
ance matrix must be invertible, the mixing coefficient
must be positive, and the total sum of the mixing coefficients
must be one. On the other hand, the weight coefficients

used in the LLGMN have no such constraints and are
mutually independent. To evaluate this difference, the LLGMN
is compared with the maximum likelihood artificial neural
system (MLANS) [9] that was developed by the direct use
of the GMM.

The classification capability of two networks are evaluated
in the 2-D feature space for three classes

, A, B, C. In the feature space, the classes A and
B are represented by a single rectangular region and class C
has two such regions. The pdf is constant in every region,
and thea priori probabilities of three classes are the same.
Also, two regions belonging to class C have the samea
priori probabilities. An example of the training data with four
rectangular regions is shown in Fig. 4.

The LLGMN includes six units in the input layer and three
in the output layer. In the second layer, the number of units
is equal to the total number of MLANS’s components. The
teacher signal is given for each class [see (22) and (24);

], and learning is carried out until the mean value
of the energy function of (21) for all training data becomes
less than 0.5. Note that, for three training sets, including 210,
270, and 330 data, dynamics of the terminal attractor [18]
are incorporated in the learning rule to speed the learning
procedure. The terminal attractor is based on the concept that

Fig. 4. Scatter diagram of 210 training data.

the Lipschitz conditions are violated at the equilibrium point.
The network learning converges to the equilibrium point, that
is, the global minimum or one of local minima, in a finite
specified time [16].

On the other hand, in MLANS, the learning procedure is
continued until the change of the Bhattacharyya distance [9]
of thea posterioriprobability with one iteration becomes less
than 0.0001. For evaluating the classification ability, 3000 data
(1000 for each class), which are different from the training
data, are artificially generated.

Fig. 5 shows the classification result when the number of
the training data is varied from 30 to 330, where the mean
values and the standard deviations of the classification rates
for ten kinds of initial weights are plotted. The solid line
and the dashed line show the results of the LLGMN and
the MLANS, respectively. Note that both the number of
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Fig. 5. Effect of the number of training data on classification ability.

Fig. 6. Effect of the number of components on classification ability.

components used in the MLANS and the number of units in the
second layer of the LLGMN are nine, i.e., three for each class.
When the number of the training data is sufficiently large,
the classification rates of both the networks are almost the
same. However, as the number of the training data decreases,
the classification rate of the MLANS becomes worse than
the one of the LLGMN. Note that the covariance matrices
included in the MLANS cannot be estimated in the case of
30 training data because the number of the data belonging to
each component decreases remarkably when the number of
the training data is small.

Next, Fig. 6 shows the classification result when the to-
tal number of components is varied from three to 12. The
number of the training data is 210, i.e., 70 for each class,
and the same convergence conditions as in the previous
experiment are used. By using the MLANS (the dotted line),
classification is performed successfully when the number
of components is large enough. For the small number of
components, however, it becomes difficult to represent the data
distribution adequately, and the classification rate decreases.
The standard deviation of the classification rate of the MLANS
becomes large when the number of components is six since
different learning results have been obtained, depending on
the initial weights. On the other hand, with the use of the
LLGMN, classification remains satisfactory even if the number
of components is small.

Fig. 7. Overview of the experimental apparatus.

V. EEG PATTERN CLASSIFICATION

A. Experiments

The pattern classification of EEG signals is carried out under
the photic stimulation by eye opening/closing and artificial
light, as shown in Fig. 7.

1) Experimental Apparatus:To evaluate the possibility of
the EEG signals as a human interface tool, simple and handy
electroence phalograph (IBVA, Random ELECTRONICS DE-
SIGN) is used. This enables us to measure EEG signals in
usual environments. The experimental system consists of the
headband, transmitter, and receiver.

The transmitter is attached to the headband. The EEG
signals measured from the electrodes are digitized by
an A/D converter (the sampling frequency Hz,
quantization bits) after they are amplified and filtered out
through low-cut (3 Hz) and high-cut (40 Hz) analogue
filters. The size of the transmitter is quite compact
(93 51 25 mm). The personal computer, which
is connected to the receiver, collects data. The surface
electrodes are located at Fp1 and Fp2, which are specified
by the International 10–20 Electrode System. The noise in
the EEG signals can be removed significantly by the bipolar
derivation between the two electrodes at Fp1 and Fp2.

2) Experimental Conditions:The EEG signals are mea-
sured under the two following conditions.

a) Photic stimulation by opening and closing eyes:
Subjects are seated in a well-lit room. First, EEG signals
are measured during both eye opening and closing (60
s for each). The measured signals are used as training
data. Next, subjects are asked to switch their eye states
alternatively according to the pseudorandom series for
450 s.

b) Photic stimulation by an artificial light:
Subjects are seated in a dark room and open their eyes.
A flash light (xenon, illuminating power: 0.176 [J]) is
set at the distance of 50 cm apart from their eyes. The
light turning on and off with the frequency 4 Hz is used
as the artificial photic stimulation.

The electroence phalograph used in the experiments has
one pair of the electrodes, so that the spatial information
of the EEG signals on the location of the electrodes can-
not be utilized. The frequency characteristics of the EEG
signals, however, significantly change depending on the eye
states. Therefore, the spectral information of the measured
EEG signals are used as follows. The power spectral density
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TABLE II
FREQUENCY RANGE USED IN THE CLASSIFICATION EXPERIMENTS

function of the measured EEG signal is estimated using the
Fast Fourier transform (FFT) for every 128 sampled data. The
function is divided into several ranges (from 0 to 35 Hz). The
frequency bands of this range are determined based on the
clinical use of the brain wave (delta, theta, alpha, beta). Time
series of the mean values of the power spectral density function
within each frequency ranges are calculated and normalized
between in each range. Thus, the multidimensional data

are obtained and used as the input vector to
the networks. Here, denotes the number of the frequency
ranges. The frequency ranges used in the experiments are
shown in Table II.

To compare the LLGMN with other NN’s, the pattern
classification experiments are conducted using four types of
networks: the LLGMN, MLANS, and two types of the BPN’s
(with one or two hidden layers). In the LLGMN, the first
layer consists of units and the third layer consists of two
units corresponding to the number of classes. The second layer
consists of the six units (three for each class) corresponding
to the total component number of the GMM. On the other
hand, in the BPN’s, the first layer consists ofunits and each
hidden layer consists of 15 units. In the MLANS, the learning
procedure is continued until the change of the Bhattacharyya
distance [9] of thea posterioriprobabilities with one iteration
becomes less than 0.0001. On the other hand, in BPN’s, the
learning procedure is continued until the mean square error
becomes less than 0.1. However, if the mean square error after
50 000 iterations does not become less than 0.2, the learning
procedure is stopped.

B. Classification Results

1) EEG Classification of Eye States:To examine the clas-
sification ability of the networks, experiments are performed
for five subjects (A, B, C, D: males, E: female). Each network
is trained using 112 data (56 for each class). Then, the ratio
of the correct classification to 422 data that are not used in
learning is computed.

Fig. 8 shows the classification result of the LLGMN (subject
A). In this figure, the 2-D input vector is used as shown in
Table II .

In the figure, the timing of switching eye states, the input
pattern to the LLGMN , the output of the network

, and the classification results are shown. As can
be seen, the LLGMN achieves considerably high performance
with 91.1% of the classification rate. The misclassified data are
observed immediately after switching eye states from opening
to closing.

Fig. 8. Classification results of eye states by the LLGMN.

TABLE III
CLASSIFICATION RESULTS OF EYE STATES

Table III shows classification results for all five subjects.
The mean values and the standard deviations of the classifica-
tion rate for 30 kinds of initial weights, which are randomly
chosen, are shown. The convergence rate is defined as the ratio
of the number of the converged learnings to 30 trials.

As can be expected for all subjects, the convergence rates of
the MLANS and the LLGMN are greater than the ones of the
BPN’s. In the BPN’s, the mean values of the convergence
rate are always less than that of the LLGMN, where the
convergence rates of the MLANS and the LLGMN are 100%.
Also, the standard deviations of the classification rates of the
LLGMN are quite small.

Next, we examine the changes of the classification rates
with the number of the training data and the dimension of
the input vector taken from Table II. For each input vector,
the number of training data is changed from ten to 100.

Here, the pattern classification results carried out using the
LLGMN and the MLANS are shown. Both the networks are
trained using 50 sets of the training data

. Then the ratio of the correct classification to
422 data, which are not used in learning, is computed. Figs. 9
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Fig. 9. Effect of the training data on classification results of eye states by
MLANS.

Fig. 10. Effect of the training data on classification results of eye states by
LLGMN.

and 10 show the mean values and the standard deviations of the
classification rate for ten kinds of the initial weights. Although
both networks can achieve a high classification rate for a large
number of training data, the difference becomes clear as the
number of the training data decreases. The LLGMN keeps the
classification rate high even for a small sample size of the
training data, whereas the classification rate of the MLANS
decreases. Note that the covariance matrices included in the
MLANS cannot be estimated in some cases
because the number of the data belonging to each component
decreases remarkably when the number of the training data
is small. The statistical structure incorporated in the LLGMN
realizes considerably high classification ability for even a small
sample size of the training data.

Also, the classification rates of the LLGMN with a sufficient
number of the input vector are relatively high even if the
number of the training data decreases. On the other hand, the
classification rate of the MLANS decreases considerably in
those cases and the standard deviations of the classification
rates are much greater than those of the LLGMN.

2) EEG Classification of the Artificial Photic Stimulation:
Next, the pattern classification experiments are carried out
using the artificial photic stimulation. An example of the
classification result is shown in Fig. 11(a). In this case, the
classification performance decreases considerably compared
to Fig. 8. Two-dimensional learning data ( in Table I)
are shown in Fig. 11(b), in which 100 data (50 for each
class) are plotted. Although the EEG patterns changed largely,
depending on the opening and closing of eyes, as shown in
Fig. 8, the evoked potential is not observed clearly from the
EEG signal measured by only a pair of the electrodes for
the artificial photic stimulation. Also, uncomfortable feelings
of the subjects may act as an artifact. As a result, part of
the distributions overlapped each other, so that it seems to

be difficult to classify the EEG data into the different classes
without any consideration on the temporal properties of the
EEG signals.

Table IV shows experimental results for five subjects. The
dimensions of the input vector and the number of the
training data are used in the learning procedure.
The ratio of the correct classification to 422 data, which are not
used in learning, is computed. Compared to the classification
result of the eye states, the classification rates under the
artificial photic stimulation decrease. Although the difference
among the individuals can be observed, the classification rates
tend to improve with the increase of the number of the training
data from to and the dimension of the input
vector from to . Also, the standard deviations of
the classification rates tend to decrease.

Fig. 12 shows the effect of the training data on the classi-
fication results of subject A. The classification rates slightly
improve with the increase of the dimension of the input vector.
On the other hand, any improvement of the classification rates,
depending on the number of the training data, is not observed.
Compared to the classification results of the eye states, the
classification rates under the artificial photic stimulation de-
crease. This is because the EEG patterns change considerably,
depending on the time of the artificial photic stimulation. To
remedy this problem, we propose to use a kind of neural filter
(NF) [19]. They should be connected to the third layer of the
LLGMN to take into account the history of the EEG patterns.

C. Introduction of Neural Filter

The NF is introduced to cope with time-varying charac-
teristics of the EEG signals and to classify them accurately.
A number of NN structures may be suitable for the NF. In
the proposed scheme, the NF deals with a single-input/single-
output signal processing and a simple and compact structure
is desirable. Lo [19] proposed the NF with one hidden layer
of fully interconnected neurons for filtering signals, including
nonlinear input/output relationships. He reported that the NF
with only a few hidden neurons consistently outperforms the
extended Kalman filter in the simulation experiments. This
type of the NF is incorporated into the proposed network.

Using the NF, the present paper proposes the following
two-step approach. First, thea posteriori probability of the
input vector belonging to each class is calculated with the
use of the LLGMN. Next, the NF’s that are connected to the
LLGMN receive thisa posteriori probability, and they make
it smoother. The characteristics of the NF can be changed
flexibly through the learning. This makes the NF different from
the conventional digital filters.

Fig. 13 shows the structure of the proposed network com-
bining the LLGMN with the NF. First, the EEG signal is
preprocessed. Then, the first layer of the LLGMN receives
the input vector . The third layer outputs to
the NF. The outputs of the NF are normalized and considered
as thea posterioriprobability. Finally, the Bayes’ rule is used
to determine the specific class.

1) Structure of the Neural Filter:Fig. 14 shows the struc-
ture of the NF. The unit in the first layer receives the input
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Fig. 11. Classification results under the artificial photic stimulation by LLGMN.

TABLE IV
CLASSIFICATION RESULTS UNDER THE ARTIFICIAL PHOTIC STIMULATION

Fig. 12. Effect of the training data on classification results of artificial photic
stimulation.

corresponding to theth outputs of the LLGMN,
and sends to the second layer. The identity function is
used for the activation function in the first layer.

The second layer consists of units. Each unit receives the
th output of the first layer and the th output of the

second layer. Also, this layer has the bias input . The
fully interconnected units keep the internal representation, so
that the time history of the input data can be considered. The
input to the unit in the second layer and the output

Fig. 13. Structure of the network. The neural filters are serially connected
to the LLGMN.

Fig. 14. Structure of the neural filter.

are defined as

(27)

(28)

where and denote the weight coeffi-
cients between theth and the th unit in the second layer,
between the first layer and theth unit in the second layer, and
between the bias input and theth unit in the second layer,
respectively. The unit in the third layer is connected to all
the units in the second layer, and the relationship between the
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Fig. 15. Classification results.

input and the output of each unit is defined as

(29)

(30)

where and denote the input and the output in
the third layer, respectively, and denotes the weight
coefficient between theth unit in the second and third layers.

The identity function is used as the activation function in
the fourth layer, and the output is defined as

(31)

where denotes the weight coefficient between the third
and fourth layers. Note that the weight coefficient
functions as a gain.

2) Learning Schedule:If the teacher signal is given only
to the output unit in the NF, the error may backpropagate
from the NF to the LLGMN, so that the learning is performed
for both networks at the same time. However, the appropriate
error backpropagation between the NF and the LLGMN could
not be guaranteed because of the redundancy of the network
structure.

Therefore, we introduce the following two-step learning
schedule that divides the learning into the LLGMN and the
NF. First, the LLGMN is trained using the training data to
represent the statistical model. Then another set of the input
data is given and the LLGMN outputs thea
posteriori probability . Next, the NF
are trained using this output data and the teacher signal

are given for each output unit. The learning
of the NF is performed according to the learning rule based on
the backpropagation through time [4] because of the presence
of the interconnection in the second layer.

3) Effect of the Neural Filter on Classification Result:To
examine the effect of the NF on the classification result, the
following experiments are carried out. In the experiments, the

TABLE V
EFFECT OF THENF ON CLASSIFICATION RESULTS

2-D input vector , shown in Table II,
is used. The NF, which includes eight units in the second
layer, is trained using data series according to the
pseudorandom series for 180 s. Then, the ratio of the correct
classification to 422 data, which are not used in the learning,
is computed.

Fig. 15 shows the effect of the NF on the classification
result (subject A). In the figure, the timing of switching eye
states (or artificial flash light), the input pattern of the LLGMN

, the output of the LLGMN , the output
of the NF , and the classification results are
shown. The outputs of the LLGMN, especially in the case
of the artificial photic stimulation, are varied considerably,
depending on time, and accurate classification is not realized.
The statistical processing by the LLGMN is not enough in this
case. It can be seen from Fig. 15 that the NF makes the output
of the LLGMN considerably smooth and the high classification
performance is obtained. This is the effect of the NF on the
classification results.

Table V shows classification results for five subjects. The
mean values and the standard deviations of the classification
rate for 30 kinds of randomly chosen initial weights are shown.
In both cases, the classification rates tend to improve with the
use of NF.
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(a)

(b)

Fig. 16. Effects of the dimension of the input vector and number of the
training data on the classification results.

Fig. 17. Classification results of three types of the photic stimulation by
LLGMN.

Then, we examine the changes of the classification rates
depending on the number of the training dataand the di-
mension of the input vector. Fig. 16 shows the classification
result. Compared to the use of the LLGMN only (see Figs. 10
and 12), the classification rates improve considerably and the
standard deviations of the classification rates keep very small
values.

Finally, additional experiments for three classes of the EEG
patterns are performed. Subjects are seated in a dark room
and the following three states are used for the classification:
closing eyes, opening eyes, and opening eyes with an artificial
light. Experimental conditions are the same as the ones used in
Figs. 8 and 11. Fig. 17 shows an example of the classification
results. Although it seems to be considerably difficult to

TABLE VI
CLASSIFICATION RESULTS OFTHREE TYPES OF THEPHOTIC STIMULATIONS

classify the EEG patterns into three different classes, the
classification rate is about 80% in these experiments. The
output of the LLGMN are smoothed out by the NF, taking
the time-varying characteristics into consideration.

Table VI shows the classification results for five subjects.
Although the high classification performance is not realized
for subjects C and D, the NF improves the classification rates
for all subjects. In the future, the feature extraction method
and experimental apparatus for EEG measurements should be
reconsidered to improve the classification performance.

VI. CONCLUSION

The present paper has proposed a new NN based on the LL-
GMN that can estimate thea posterioriprobability for pattern
classification problems. The parameters of the network, such
as an activation function of each unit, number of layers, and
number of units, can be determined easily in correspondence to
the GMM incorporated in the network. Also, the output from
the LLGMN can be interpreted as a probability. The forward
calculation and backward learning rule, which is based on the
maximum likelihood estimation, can be defined in the same
manner as the one of the feedforward NN model. To examine
the classification ability of the proposed network, simulation
and experiments have been performed. The results obtained
are summarized as follows.

• In the simulation, the statistical structure incorporated in
the LLGMN realized the smooth decision region bound-
aries even for a small sample size of the training data.

• Weight coefficients used in the LLGMN have no con-
straints and are mutually independent, so that the LLGMN
achieved higher classification performance than that of the
MLANS even for a small sample size of the training data.

• In the EEG pattern classification experiments of eye states
and artificial photic stimulation for five subjects, the
LLGMN classified the EEG patterns with about 85% and
75% of the classification rates, respectively.

• LLGMN achieved effective learning and relatively high
classification performance, while the learning of the
BPN converged local minima frequently and that of
the MLANS needed a large sample size of the training
data.
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• In order to cope with time-varying characteristics of the
EEG patterns, a new network structure that combines
LLGMN with NF was introduced in three kinds of
experiments: the eye opening and closing, the artificial
flash light, and the eye opening and closing with an arti-
ficial flash light. This network achieved considerably high
classification performance with 92.4, 83.8, and 83.2% of
the mean values of the classification rates, respectively.

Our future research will be directed toward developing some
techniques to incorporate a dynamic statistical model into
the NN.
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