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A Log-Linearized Gaussian Mixture Network and
Its Application to EEG Pattern Classification

Toshio Tsuji,Associate Member, IEEEDsamu Fukuda, Hiroyuki Ichinobe, and Makoto Kanekiember, IEEE

Abstract—The present paper proposes a new probabilistic probabilistic NN based on the mixture model and the log-linear
neural network (NN) that can estimate a posteriori probability ~ model of the probability density function (pdf).
for a pattern classification problem. The structure of the proposed Generally, an input for a pattern classification problem can

network is based on a statistical model composed by a mixture . . - . . S
of log-linearized Gaussian components. However, the forward be considered as a stochastic variable with a certain distri-

calculation and the backward learning rule can be defined in the bution. In this case, the pattern classification problem usually
same manner as the error backpropagation NN. In this paper, the reduces to the estimation problem of the pdf since the classifi-
proposed network is applied to the electroencephalogram (EEG) cation can be performed according to the Bayes’ rukepbs-
pattern classification problem. In the experiments, two types of & o inri probability of the input pattern is obtained accurately.

photic stimulation, which are caused by eye opening/closing and . . )
artificial light, are used to collect the data to be classified. It is There are two approaches for estimation of the pdf: paramet-

shown that the EEG signals can be classified successfully andric and nonparametric approaches. In the parametric approach,
that the classification rates change depending on the number of a specific type of the pdf is assumed. Then the problem reduces

training data and the dimension of the feature vectors. to the parameter estimation of the assumed pdf. Linking
Index Terms— Electroencephalography, feedforward neural this approach to the NN's, Bridle [5] proposed a method
networks, pattern classification, recurrent nerual networks. that estimates parameters of the pdf as synaptic weights of

an NN by assuming the normal distribution for each event.
Although the method can estimate the pdf from small sample

size data, the discrimination ability considerably decreases

AN electroencephalogram (EEG) signal pattern chang@gen complete knowledge of the pdf is lacking. On the
depending on external or internal factors, such as phofjgher hand, Specht [6] proposed a general regression NN
stimulation, auditory stimulation, and intentions of moveg,5¢ computes a pdf based on the Parzen window estimation.
ments. These factors may be used as an interface in Virtﬂ%lkagawa and Ono [7] showed that the pdf ancatbesteriori
reality and teleoperation d.evices, oras a c;ommunication tcﬁ%bability can be estimated from sampled data using the
for handicapped persons, if the operator's intended movemeREyor quantization and the radial basis function network.
can b_e estimated from t_he I.EEG pattern. ... These methods are based on the nonparametric approach in
_Untll now, some m_vestlgatlonS of EEG pattern classificatiofich the pdf is estimated by making a multidimensional
using backpropagation neural networks (NN,S), have be‘iznri‘stogram so that accurate estimation of the pdf requires a
carried out [1], [2]. Most of them, however, dealt with resear rge number of sampled data.
on an automatic djagnosis in_ a clinic, a}nd only few studies 1,2.an [8] proposed an NN based on the semiparametric
were concerned with developing a new '”terf"?‘ce tool [_3]' estimation of the pdf, which has a flexible structure to represent
The NN based on the error bapkprop_agatpn learning [% y distribution and includes a set of parameters of the specific
have been ff‘?q“‘?“t'y employe_d in various fields, such 8ftribution, and applied his method to a speech recognition
pattern classification and learning control. These NN’s ¢ oblem of 18 Swedish consonants. The mixture model of
represent any nonlinear mapping between input and out is a key element of the semiparametric method, which

patterns. In case of the pattern classification of unclear E froximates an unknown distribution by the weighted sum of
i

I. INTRODUCTION

signals using backpropagation NN's, the networks need a lar nite number of component densities. The Gaussian mixture

number of training data, learning iterations, and a large scalerﬁ del (GMM) using Gaussian component densities has been

structure. Also, it is very difficult to attain high classn‘lcatlonOften used in tandem with NN's: wén [8], Perlovsky and
performance.

In order to improve the generalization ability of the NN,SMcManus [9], Tsujietal.[10], Lee and Shimoji [11], and Streit

the present paper proposes a new type of the feedforwglrndd Luginbuhl [12]. For example, Perlovsky and McManus
P Paper prop yp replaced each component of the GMM with units of the NN,
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out the simulation experiments that need complicated decisionThis paper is organized as follows. The LLGMN and trans-
region boundaries, and the high classification performanfimation of this model to the NN are explained in Sections Il
were achieved. and lll. The classification ability is evaluated by simulations
However, most of these methods only exploited iteratiie Section IV. The proposed network is applied to the EEG
procedure of the maximum likelihood estimation with forwarghattern classification problem in Section V. In Section V,
computation of thea posteriori probability. As such, the neural filters having a recurrent structure are connected to the
classification ability of the proposed networks was limited tproposed network to smooth a variability of theposteriori
the same level of the GMM. If the number of componentgrobabilities. It is shown that the EEG signals can be classified
increases, the network needs a lot of sample data to estimatecessfully. Finally, Section VI concludes the paper.
the GMM parameters, such as mixture coefficients, mean
values, and standard deviations. Therefore, the classification
ability often decreases for a high-dimensional classification
problem. Also, Lee and Simoji [11] pointed out the local , )
minima problem in the network learning. A. Gaussian Mixture Model
On the other hand, Jordan and Jacobs [13] proposed thén the GMM, a pdf is represented by the weighted sum of a
hierarchical mixture of expert (HME) that incorporated dinite number of components with Gaussian densities. Then the
generalized linear model in the NN, and they applied it tpdf estimation problem reduces to estimation of the parameters
a control simulation of a four-joint robot arm moving inincluded in each component. Here, a pdk) of the feature
three-dimensional (3-D) space. The generalized linear modektorx € R¢ is represented by GMM witti classes
was defined by Nelder and Wedderburn [14]. It includes a
large class of useful statistical models, in which the dependent e e
variables are distributed according to some exponential family Fx) =D anmg (), ) (1)
and can be made linear by a monotonous and differentiable k=1m=l
transformation. Using the generalized linear model, the HME

Il. LOG-LINEARIZED GMM

K M,

consists of two kinds of subnetworks: expert and gating K M
networks. The expert network extracts characteristics of the Z Z pen = 1 2)
sampled data depending on a specific part of the input vector k=1m=1

space. Outputs from all expert networks are integrated through

the mixture coefficients regulated by the gating networks. ., .

By introducing the gating networks, the internal structurey(x; p(*™), x*m)) = (27r) 72| k)| 72

of the HME becomes hierarchical. It includes much more 1 G T

parameters than the ones of the GMM, which may complicate X exp [_5 (X —p )

the learning algorithm and lead to the loss of simplicity of the

NN model. x (B TH(x — k)
The present paper proposes a new type of the feedforward

probabilistic NN for pattern classification problems. The NN (3)

is based on the GMM and the log-linear model of the pdf. o N . . .

By applying the log-linear model to a product of the mixtur&/1€"e g(c; ), BEm)) s the d-dimensional Gaussian

coefficient and the mixture component of the GMM, th istribution. My (k =1,..., K) denotes the_number of.c.om-

semiparametric model of the pdf can be incorporated into thgnents c.)f.the clask; Ok,m denotes the mixture cogfﬁuent

feedforward NN and a simple learning algorithm based on tf ktsg m|x(|lng progprtlt;on OzxiaCh componelﬁk,m}, and

backpropagation is still applicable. prem e R and B9 e R represent, respectively, the

In the proposed network, the weight coefficients regulatﬁ]ean vect(:r acr;d ;:ov?hnancetmaémf[ of e_ach tC Ompofies}.
in the learning process correspond to the parameters of the | re,| - | stan s for the matnix determinant. L
linearized GMM (LLGMN) that are the nonlinear combination Now, let us briefly .dISCUSS the problem of classification of
of the GMM parameters, such as the mixture coefficients, me observe.d vectar |nt<'). one of t.heK cIe_mssps. The' .Bayes
values, and standard deviations of each component. The weight determines a_specmc classafposterlorl probability of
coefficient has no longer restricted range like a limitation € vtehctorlbelonglLrIJg_ to ttr?e é:\iiﬂs ,'[; Iargter_th_an tbheb_(l)_tnes of
the statistical parameters included in the GMM: for instanc € other classes. Using the » lagostenionprobability

standard deviation must be positive. Therefore, the repres n(-k | x) (b =1,....K)is given as

tation ability of the proposed network should be higher than M, M,

that of the GMM. This is a distinctive feature of the proposed p(j | x) = Z Plk,m | x) = Z Pk, m)P(x | k,m)
network, and it can be expected to achieve higher classification el et P(x)
performance than the ones of previous methods. Also, the 4)

network’s parameters, such as the activation function of each

unit and a number of layers and units, can be determined Wwhere P(k,m) is a priori probability of the clasg: and the
the corresponding structure of the GMM incorporated intcomponentm, which corresponds to the mixing coefficient
the network. ax,m; and P(x | k,m) is the pdf ofx agreed upon the class
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k and the component:. Then, using (1), thea posteriori X € R¥, where the element of the vectg@®™ is a

probability, P(k, m | x) can be expressed as nonlinear combination of the GMM parameters, such as the

Pk, m)P(x | k,m) mixture coefficients, mean val_u_es, _and stande_lrd deviations of
! ! the sample data, and the modified input ve&omcludes the

P(k,m | x) =

M, .
Y1 Lomiy PR m!)P(x | K, m) product of the elements of the input feature vector
,mg (x; plEm) B km)) By regarding the coefficient vectgB®™) as the weight
- 25:1 %ﬁ,lak, m,g(x-u(k’:m’hE(k’:m’>)' coefficients, the GMM can be incorporated as the network

5y Structure. However, the definition gB*™) (9) indicates
©) that each element gB*™) is constrained by the statistical

In the GMM, the pdf is approximated by the weighted surroperties of the parametej{}’m). This constraint may cause

of the Gaussian component. a difficult problem in the learning procedure: how to satisfy the
constraints during the learning of the weight coefficients. In
B. Log-Linearization order to remove this difficulty, the new variabig ,,, and the
_ ‘ o o new coefficient vectow(*™ are introduced in this paper as
Using the mean vectqu(®m = (u*™ 1, #™)T gnd
the inverse of the covariance matix*™)~1 = [s{¥"™)], the Yim 2 &m — £x0
numerator of the right side of (5) can be represented as — (ﬂ(k,m) _ 5(K7Mk))TX — wkEmx (11)
armg (3 p 7, ) where the weight coefficieny ™ is defined as the differ-
= agm(2m)7F |E(k m)| ence betweed®™) and 8-Mx) andw(-Mx) = 0. Owing
4 to this transformation, the weight coefficiewﬂ’fim) can have _
% ex 1 Z Z S(k, D any real number, so that there are no constraints in the learning
P15 651) it g procedure. Note that this transformation does not result any

jzldl=1 loss of information in spite ofx »s,, = 0 since the variable
S5l (i) Qi) £.m in (7) is redundant because §F,_, S Mt P(k,m |
J

x) = 1. Then thea posteriori probability P(k,m | x) of (5)
can be computed as

+

M=

1

o~

=1

s,
Il

1 4 4 (k,m k,m k,m
SR @) T E— 12)
j=ti=t Zl:’:l rn’U 1 eXp[Yk' m’ ]
where ¢;; is the Kronecker deltas;; = 1 wheni = j and By taking the logarithm of each pdf and using the weight
6;;, = 0 whent¢ # j. coefficient vectorw(*™)  the a posteriori probability can be
Let us linearize the right side of (6). Taking logarithm otxpressed with the use of the variafifg,,,. Note thatYy ,,
(6), we get is the linear sum of the modified input vectd® and the

coefficient vectorw(*), In this paper, coefficient vector

A . L (Bym) (ko) o alk,m)T
S = log g g (x5, 5EM) = 3 X (1) G s used as the weight vector and is modified through

whereX € ®7 and 3%*™ ¢ R are defined as learning using the te_a_cher vec_tqr. Many parameters of the
GMM, such as the mixing coefficienty ,,, the mean vector
X = (L,x", 21,2122, ..., 2124, 73, 2273, . . . , p® ™ and the covariance matriX(*, are replaced by
Loy $2)T ®) arbitrary parametersv*»™), Owing to this replacement, the
Frdrad network can learrw*™ over the structure of the GMM.
It can be seen that, if the number of componehfs for
km) _ (k,m) (k,m) (k,m) (k,m) (k,m) i . ! .
prm = B Z Si1 My e ’Z Sja My each class is given adequately, the elements of the input vector
j=1 j=1 X and the weight vectow*™ are determined automatically
_ls(k,m) _gkm) o (km) in correspondence to the characteristics of the pdf. The number
PR of components can be determined arbitrarily, or based on the
1 1 r information on the pdf of the sample data. In the next section,
_5(2 _ 5].1)3](,’;:"’)7 = s (9) the LLGMN is developed as a feedforward NN.
[ll. NN M oDEL

ﬁék,m) Z Z S(k m) (k m) ;k ,m)

J =11i=1 A. Network Architecture
d 1 .
—3 log 27 — 3 log |E(k’m)

+ log atg m (10) The structure of the NN we use in our study is shown in
Fig. 1. The network is of feedforward type and contains three
and the dimensiorf is defined asH = 1 + d(d + 3)/2. layers. First, the input feature vectarc R¢ is preprocessed
We can see that; ., can be expressed as the product afnd converted into the modified input vec®re R/’ accord-
the coefficient vector3*™) and the modified input vector ing to (8). The first layer consists df units corresponding



TSUJl et al. LOG-LINEARIZED GAUSSIAN MIXTURE NETWORK AND EEG 63

vectorx(™. When the teacher provides perfect classification,

o | & T{™ = 1 for the particular clasg and 7" = 0 for all the
—g other classes. Using the posteriori probability P(k | x(™),
X2 E the probability that the teacher vect®f™ is observed for the
_’8 input vectorx(™ is given by
. v
e P(T™) =[] Pk | x5 (19)
o k=1
Xi | &
)

The network is trained using a given setfdatax(™ (n =
1,...,N). Using the training data, a log-likelihood function
L can be derived from (18) and (19) as
to the dimension ofX, and the identity function is used for

Fig. 1. Structure of an LLGMN.

activation of each unit. The relationship between input and N K

output of each unit in the first layer is defined as L= Z ZTén) log Yk(n) (20)
(I)IJ — Xj (13) n=1 k=1
(1)0]. — (1)Ij (14)

where thenth output Yk(") of the LLGMN corresponds to
where M1; and (WO, denote the input and the output,P(k | x(™). As an energy function for the network, we use
respectively, of thejth unit in the first layer.

The second layer consists of the same number of units as

L N N K
the total component number of the GMMX;;L M. Each J= Z J = _ ZZTIE‘”) 10ng(n) (21)
unit receives the output of the first layer weighted by the 1 o
coefficientw,(f’m) and outputs the posteriori probability of

each component according to (12). The input to the{itn} and the learning is performed to minimize it, that is, to
in the second layef”) I, ., and the output? Oy ,,, are defined maximize the likelihood. Fox(™, the weight modification

as Aw*™ of the corresponding weight " (h = 1,..., H)
H . is defined as
D L = > DOpwf™ (15)
h=1 . aJ,
(k,m) n
exp| DI m Awy, " = =n—a (22)
D0y, = L ]2 (16) ™
k=1 m/=1 exXp [( )Ik’:"l’]

wherew,(f"’M’“) =0 (h=1,...,H). It should be noted that In a sequential learning scheme, and

(16) can be considered as a kind of the generalized sigmoid
functions. N oo
(k,m) n
Finally, the third layer consists dk units corresponding to Awy, =N Z PGED) (23)
the number of classes and outputs #ghposteriori probability I

of the clasg: (k = 1,..., K). The unitk integrates the outputs ) . ] .
of M, units{k,m} (m = 1,..., M) in the second layer. The N & collective learning scheme. He¥gey> 0 is the learning rate

relationship between the input and the output is defined asand the partial derivative in (24) and (25) can be obtained using
the chain rule in the same manner as the error backpropagation

n=1

M,

rule [4
(3)Ik = Z (Q)Ok,rn (17) [ ]
m=1
K
Y, = @1, (18) 0, _ 0 3 Z 700 10g v
] o - aw(k,rn) aw(k,rn) k k
In the LLGMN defined above, tha posteriori probability h h k=1
of each class is defined as outputs of the last layer. Note that, B K aT,Ef” long(,n)
the log-linearized Gaussian mixture structure is incorporated - oy ™
in the network through learning only the weight coefficient K=l K
(k;m) My ) 9@t @) )
wy, . « Z aYk! k' m/ k.m
m/=1 8(2) Ol(:’L)rn’ a(Q)IIEanl awl(zkml)
B. Learning Rule ’2) n
Now, let us consider the supervised learning with the teacher = (v, -y —km x (24)

vector T = (Tf"), . .,T,E"), . .,T,(‘TL))T for the nth input Yk(n)
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If the teacher signal for each component is available, the partial TABLE |
derivative of (24) can be replaced as PARAMETERS OF THE GAUSSIAN MIXTURE MODEL USED IN THE EXPERIMENTS

Q. #(k. mT Stkm
aJ 9 K Mgk component, m | 1 2 1 2 1 2
o = o |~ 2 2 T los PO, ! |03 | 02 00001150791 | 7 65l o5 1o |
awh ’ awh ’ k=1 m=1 7 7 class, k 2 [0.25]0.25|12.0,2.01 [—6020][ l.,(i 2..7 ][609 0:0]
K Mg (n) (2) () 1 o b 2.7 9.0l 00 1.0
3y 3 w000,
k=1 m/=1 8(2) Ol(cr’L,)rn’ 100
a(Q)Ol(cr’L,)rn’ 8(2)‘[15?721 &T L
(n) (k,m) j2] 1
IOL") dwi = 90
= (®og, — 1) X5 (25) & wof
= |
(9]
n) - . l’E 70+
where T} is the teacher signal for the componet, m}. % I
Note thatZ{™) = 1 if the samplex(™ belongs to the U 60l— : : . ;
component{k,m} and T,E"n)l = 0, otherwise. In the pattern 10 20 30 40 50
e g . . Number of training data
classification problems, the teacher signal usually defines
assignment of different classes. It can be seen from the learning _; j ;I];SMN

rule (24) that the teacher signals given for the classes are
propagated backward into each component according to fiig 2. Effect of the number of training data on classification ability.

ratio of thea posterioriprobability@)O,(:,)n of each component

to the a posteriori probability Yk(") of the classk. data(d = 2, H = 6) for two classe§K = 2). The data are
The learning rule derived in this paper can be applieattificially generated using the Gaussian mixture pdf with two

using, not only the discrete teacher signal{6f1}, but the component§A; = M, = 2). Table | indicates the parameters

probabilistic or fuzzy teacher signal that takes continuowged in the GMM.

values of [0,1]. It should be noted that the conditions of The LLGMN includes four units in the second layer that
2:1 T,ﬁ") = 1 and T,ﬁ’;{ > 0 must be held. Now, when correspond to the total component number, six in the input

the teacher signal vectaF™ and the output vectol ) = layer, and two in the output layer. The BPN includes two

v, ... 7yk<">7 o 7YI(("))T of the LLGMN are given, the Units with the identity activation functions in the input layer;

energy function for learning is changed as ten units with the sigmoid functions in each of the two hidden

layers; and two units with the sigmoid functions in the output

J = zj\: I(T(n);Y(n)) _ zj\: iTlgn) log T;En) layer. Learning for both the networks is carried out until the
— — Yk(") energy function./,, of (21) becomes less than 0.1 for all
N K N K training data. The teacher signal is given for each class [see
= ZZT’E’” log T — ZZT’E’U log V™ (22) and (24);y = 0.0001]. For the BPN, two outputs are
el k1 o normalized to make the sum of the outputs one.
>0 (26) Fig. 2 indicates changes in the classification rate as the

) ) ) number of the training data increases. Both the networks are
where I (), Wh'Ch_ arises here as a difference ,betweet?ained independently using five sets of the training data. The
T and Y, V\(as mtrodyced by Kullback and Leibler a,sfnumbers of the training data are 10-50. After learning, 2000
a measure of directed divergence between two probabilfi, that are not used in learning are prepared for classification.
dl(SrglbutIO?nS) [15]. We have with equality if, and only if.then the ratio of the correct classification to 2000 data (1000
T,0 =Y, foral k. _ for each class) is computed. In Fig. 2, the mean values and the

Note that the first term in (26) is constant. Thus, the secogghngard deviations of the classification rate for ten kinds of
term should be minimized to maRe(™) close toT™. Since jyjtial weights that are randomly chosen are plotted. Although
the second term is equal to the energy functibof (21), the  oth networks can achieve a high classification rate for a large
learning rules (22)—(25) derived for the perfect teacher signahmper of training data, the difference becomes clear as the

also minimize the Kullback information. number of the training data decreases. The LLGMN keeps the
classification rate high enough even for a small sample size
IV. SIMULATION EXPERIMENTS of the training data, whereas the classification rate of the BPN
o . significantly decreases.
A. Generalization Ability Decision region boundaries, on which tte posteriori

To compare the generalization ability of the LLGMN withprobabilities of both classes become equal, are shown in Fig. 3.
that of the error backpropagation NN (BPN), pattern classificks the BPN, the decision region boundaries are varied largely
tion experiments are carried out using two-dimensional (2-Djith the number of the training data. On the other hand, similar
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(b)
Fig. 3. Scatter diagram of training data and decision region boundaries: (a) LLGMN and (b) BPN.

decision region boundaries can be obtained by the LLGMN in
spite of changes in the number of the training data.

B. Representation Ability

The parameters of the GMM, such as the mixing coefficient
.m, the mean vectop*™) and the covariance matrix
¥(*m) include several constraints. For example, the covari-
ance matrix must be invertible, the mixing coefficien{ ,,
must be positive, and the total sum of the mixing coefficients

must be one. On the other hand, the weight coefficients Tg}g::g

w*™ used in the LLGMN have no such constraints and are ® class C

mutually independent. To evaluate this difference, the LLGMN ;

is compared with the maximum likelihood artificial neural : : L 1 )

system (MLANS) [9] that was developed by the direct use 0 01 02 03 04 05 06 07

of the GMM. 4

The classification capability of two networks are evaluatetig. 4. Scatter diagram of 210 training data.
in the 2-D feature spacé&! = 2, H = 6) for three classes

(K = 3), A, B, C. In the feature space, the classes A an

B are represented by a single rectanaular region and clas H& Lipschitz conditions are violated at the equilibrium point.
P y 9 9 9 The network learning converges to the equilibrium point, that

has two such regions. The pdf is constant in every regiolg, the global minimum or one of local minima, in a finite
and thea priori probabilities of three classes are the sameé.’ i ?j i 16 '
Also, two regions belonging to class C have the same SPecIled time [16].

priori probabilities. An example of the training data with four Op the othgr hand, in MLANS, the learning pro.cedure is
rectangular regions is shown in Fig. 4. continued until the change of the Bhattacharyya distance [9]

The LLGMN includes six units in the input layer and thre@f the a posterioriprobability with one iteration becomes less
in the output layer. In the second layer, the number of uni{g@n 0.0001. For evaluating the classification ability, 3000 data
is equal to the total number of MLANS’s components. Thel000 for each class), which are different from the training
teacher signal is given for each class [see (22) and (24fta, are artificially generated.
n = 0.5], and learning is carried out until the mean value Fig. 5 shows the classification result when the number of
of the energy functiow,, of (21) for all training data becomesthe training data is varied from 30 to 330, where the mean
less than 0.5. Note that, for three training sets, including 21\alues and the standard deviations of the classification rates
270, and 330 data, dynamics of the terminal attractor [18)r ten kinds of initial weights are plotted. The solid line
are incorporated in the learning rule to speed the learniagd the dashed line show the results of the LLGMN and
procedure. The terminal attractor is based on the concept ttitee MLANS, respectively. Note that both the number of
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Fig. 5. Effect of the number of training data on classification ability. A. Experiments

The pattern classification of EEG signals is carried out under
the photic stimulation by eye opening/closing and artificial
light, as shown in Fig. 7.
1) Experimental ApparatusTo evaluate the possibility of
- ) ) the EEG signals as a human interface tool, simple and handy
. electroence phalograph (IBVA, Random ELECTRONICS DE-
SIGN) is used. This enables us to measure EEG signals in
usual environments. The experimental system consists of the
headband, transmitter, and receiver.
1 The transmitter is attached to the headband. The EEG
3 6 9 12 sighals measured from the electrodes are digitized by
Number of components an A/D converter (the sampling frequeneyl20 Hz,

—o— LLGMN guantization= 8 bits) after they are amplified and filtered out

--0-- MLANS through low-cut (3 Hz) and high-cut (40 Hz) analogue

filters. The size of the transmitter is quite compact

Fig. 6. Effect of the number of components on classification ability. (93 x 51 x 25 mm). The personal computer, which
is connected to the receiver, collects data. The surface

components used in the MLANS and the number of units in tiféectrodes are located at Fpl and Fp2, which are specified
second layer of the LLGMN are nine, i.e., three for each clad®/ the International 10-20 Electrode System. The noise in
When the number of the training data is sufficiently largéh® EEG signals can be removed significantly by the bipolar
the classification rates of both the networks are almost tfgrivation between the two electrodes at Fpl and Fp2.
same. However, as the number of the training data decreaseg) Experimental ConditionsThe EEG signals are mea-
the classification rate of the MLANS becomes worse thaiired under the two following conditions.
the one of the LLGMN. Note that the covariance matrices @) Photic stimulation by opening and closing eyes:
included in the MLANS cannot be estimated in the case of  Subjects are seated in a well-lit room. First, EEG signals
30 training data because the number of the data belonging to are measured during both eye opening and closing (60
each component decreases remarkably when the number of s for each). The measured signals are used as training
the training data is small. data. Next, subjects are asked to switch their eye states
Next, Fig. 6 shows the classification result when the to-  alternatively according to the pseudorandom series for
tal number of components is varied from three to 12. The 450 s.
number of the training data is 210, i.e., 70 for each class,b) Photic stimulation by an artificial light:
and the same convergence conditions as in the previous Subjects are seated in a dark room and open their eyes.
experiment are used. By using the MLANS (the dotted line), A flash light (xenon, illuminating power: 0.176 [J]) is
classification is performed successfully when the number set at the distance of 50 cm apart from their eyes. The
of components is large enough. For the small number of light turning on and off with the frequency 4 Hz is used
components, however, it becomes difficult to represent the data  as the artificial photic stimulation.
distribution adequately, and the classification rate decreasesThe electroence phalograph used in the experiments has
The standard deviation of the classification rate of the MLANSne pair of the electrodes, so that the spatial information
becomes large when the number of components is six sirafethe EEG signals on the location of the electrodes can-
different learning results have been obtained, depending oot be utilized. The frequency characteristics of the EEG
the initial weights. On the other hand, with the use of thsignals, however, significantly change depending on the eye
LLGMN, classification remains satisfactory even if the numbestates. Therefore, the spectral information of the measured
of components is small. EEG signals are used as follows. The power spectral density
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TABLE I @ open —
FREQUENCY RANGE USED IN THE CLASSIFICATION EXPERIMENTS L% 'fé | * i
% close — -
d Frequency ranges (Hz) 1 3
2 [o-8 o= - | - | - | - _g R SN
3 0~8 | 9~20|21~35] - - - a2
= A NIM 1
4 0~8 | 9~12 | 13~20] 21~35 - - = — \ WW
5 | 0-4 |5~8 | 9~12|13~20|21~35] - 0 ‘ |
6 0~2 | 3~4 | 5~8{ 9~12]13~20|21~35 =1 MW —'r"ji’
X X 2 X 3 X 4 X s X 6 *36 0 L - e —
=%
d : Dimension of the input vector 3 1 T : :
GESH W T L AT

function of the measured EEG signal is estimated using the
Fast Fourier transform (FFT) for every 128 sampled data. The
function is divided into several ranges (from 0 to 35 Hz). The

frequency bands of this range are determined based on the
clinical use of the brain wave (delta, theta, alpha, beta). Ti e

series of the mean values of the power spectral density function
within each frequency ranges are calculated and normalized
between[0, 1] in each range. Thus, the multidimensional data
(z1,z2,...,24) are obtained and used as the input vector to

mClassified 0 Misclassified

« ‘

3 OPCHE | D

73 : : : : :

2 close - B B R |

0 100 200 300 400 [s]

Classification LLGMN

Classification results of eye states by the LLGMN.

TABLE Il
CLASSIFICATION RESULTS OF EYE STATES

the networks. Hered denotes the number of the frequency Subject |Performance| BPN with BPN with | MLANS |LLGMN
ranges. The frequency ranges used in the experiments e ‘hid;‘z"ﬁ‘ayﬂ 2‘?“‘2’,‘3‘2‘?3‘5 wss | ol
. cla . . . .

shown in Table II. . , (male) Rsd 12.1 34 21 | 04
To compare the LLGMN with other NN'’s, the pattern " TReon T 533 86,7 Too.o | 1600
classification experiments are conducted using four types of B Rela 762 | 844 83.7 | 83.3
networks: the LLGMN, MLANS, and two types of the BPN's  (male) Rsd 6.1 3.1 0.7 1 0.6
(with one or two hidden layers). In the LLGMN, the first - - Reon 733 83.3 100.0 4 100.0
. . . . Rela 81.6 88.7 89.9 88.6

layer consists off units and the third layer consists of two .. Rsd 54 g b4l 1a
units corresponding to the number of classes. The second layer T Reon 80.0 833 | 1000 | 1000
consists of the six units (three for each class) corresponding » Rela 734 78.4 806 | 813
to the total component number of the GMM. On the other (male) |  Rsd 5.7 37 405 11
hand, in the BPN’s, the first layer consistscifinits and each ﬁc;’" Z:; gg";r “9’3-‘6’ “9"3“2)
hidden layer consists of 15 units. In the MLANS, the learning ... dea 67 R 16 1 06
procedure is continued until the change of the Bhattacharyya ~ Reon 567 60.0 100.0 | 100.0
distance [9] of thea posterioriprobabilities with one iteration Rela : Classification rate(%), Rsd : Standard deviation(%)

becomes less than 0.0001. On the other hand, in BPN's, the Reon: Convergence rate(%)

learning procedure is continued until the mean square error
becomes less than 0.1. However, if the mean square error aftef,pie || shows classification results for all five subjects.

50000 iterations does not become less than 0.2, the learmgy, mean values and the standard deviations of the classifica-
procedure is stopped. tion rate for 30 kinds of initial weights, which are randomly
chosen, are shown. The convergence rate is defined as the ratio
of the number of the converged learnings to 30 trials.

1) EEG Classification of Eye State3o examine the clas- As can be expected for all subjects, the convergence rates of
sification ability of the networks, experiments are performettie MLANS and the LLGMN are greater than the ones of the
for five subjects (A, B, C, D: males, E: female). Each networBPN'’s. In the BPN’s, the mean values of the convergence
is trained using 112 data (56 for each class). Then, the rataie are always less than that of the LLGMN, where the
of the correct classification to 422 data that are not used donvergence rates of the MLANS and the LLGMN are 100%.
learning is computed. Also, the standard deviations of the classification rates of the

Fig. 8 shows the classification result of the LLGMN (subjedtLGMN are quite small.

A). In this figure, the 2-D input vector is used as shown in Next, we examine the changes of the classification rates
Table Il (d = 2,H = 6, K = 2). with the number of the training dat® and the dimension of

In the figure, the timing of switching eye states, the inpuhe input vectord taken from Table Il. For each input vector,
pattern to the LLGMN(z1,z2), the output of the network the number of training dat& is changed from ten to 100.
((3)01, @) 0-), and the classification results are shown. As can Here, the pattern classification results carried out using the
be seen, the LLGMN achieves considerably high performanceGMN and the MLANS are shown. Both the networks are
with 91.1% of the classification rate. The misclassified data arained using 50 sets of the training déaté = 10, 20, . .., 100,
observed immediately after switching eye states from openidg= 2,3, ...,6). Then the ratio of the correct classification to
to closing. 422 data, which are not used in learning, is computed. Figs. 9

B. Classification Results
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be difficult to classify the EEG data into the different classes
without any consideration on the temporal properties of the

[= ]

g_g EEG signals.

g-g Table IV shows experimental results for five subjects. The
':é dimensions of the input vectel= 2, 6 and the number of the

» training data/N = 50 100 are used in the learning procedure.
N The ratio of the correct classification to 422 data, which are not
used in learning, is computed. Compared to the classification
result of the eye states, the classification rates under the
Fig. 9. Effect of the training data on classification results of eye states Bytificial photic stimulation decrease. Although the difference
MLANS. among the individuals can be observed, the classification rates
tend to improve with the increase of the number of the training
data fromN = 50 to N = 100 and the dimension of the input
vector fromd = 2 to d = 6. Also, the standard deviations of

d 337%
d : Number of the input vector, N : Number of the training data

—
w

a e v
g 2 10 g E  the classification rates tend to decrease.
Q8 s & oy Fig. 12 shows the effect of the training data on the classi-
- B B . . . ape . .
§' 03 fication results of subject A. The classification rates slightly
6 100 —

improve with the increase of the dimension of the input vector.
43 SON On the other hand, any improvement of the classification rates,
d 210 ) o )
, .. depending on the number of the training data, is not observed.
d : Number of the input vector, N : Number of the training data e
Compared to the classification results of the eye states, the
Fig. 10. Effect of the training data on classification results of eye states Bjassification rates under the artificial photic stimulation de-
LLGMN. crease. This is because the EEG patterns change considerably,
depending on the time of the artificial photic stimulation. To

and 10 show the mean values and the standard deviations off¢f@edy this problem, we propose to use a kind of neural filter
classification rate for ten kinds of the initial weights. AlthougiNF) [19]. They should be connected to the third layer of the
both networks can achieve a high classification rate for a largeGMN to take into account the history of the EEG patterns.
number of training data, the difference becomes clear as the
number of the training data decreases. The LLGMN keeps the ) ]
classification rate high even for a small sample size of tife Introduction of Neural Filter
training data, whereas the classification rate of the MLANS The NF is introduced to cope with time-varying charac-
decreases. Note that the covariance matrices included in téestics of the EEG signals and to classify them accurately.
MLANS cannot be estimated in some ca$ds= 10,...,40) A number of NN structures may be suitable for the NF. In
because the number of the data belonging to each componéstproposed scheme, the NF deals with a single-input/single-
decreases remarkably when the number of the training dataput signal processing and a simple and compact structure
is small. The statistical structure incorporated in the LLGMNs desirable. Lo [19] proposed the NF with one hidden layer
realizes considerably high classification ability for even a smalf fully interconnected neurons for filtering signals, including
sample size of the training data. nonlinear input/output relationships. He reported that the NF
Also, the classification rates of the LLGMN with a sufficientvith only a few hidden neurons consistently outperforms the
number of the input vectod are relatively high even if the extended Kalman filter in the simulation experiments. This
number of the training data decreases. On the other hand, tyyge of the NF is incorporated into the proposed network.
classification rate of the MLANS decreases considerably inUsing the NF, the present paper proposes the following
those cases and the standard deviations of the classificatiwn-step approach. First, the posteriori probability of the
rates are much greater than those of the LLGMN. input vector belonging to each class is calculated with the
2) EEG Classification of the Artificial Photic Stimulation:use of the LLGMN. Next, the NF’s that are connected to the
Next, the pattern classification experiments are carried dutGMN receive thisa posteriori probability, and they make
using the artificial photic stimulation. An example of thét smoother. The characteristics of the NF can be changed
classification result is shown in Fig. 11(a). In this case, tHkexibly through the learning. This makes the NF different from
classification performance decreases considerably compaiteel conventional digital filters.
to Fig. 8. Two-dimensional learning datd &€ 2 in Table I) Fig. 13 shows the structure of the proposed network com-
are shown in Fig. 11(b), in which 100 data (50 for eachining the LLGMN with the NF. First, the EEG signal is
class) are plotted. Although the EEG patterns changed largglyeprocessed. Then, the first layer of the LLGMN receives
depending on the opening and closing of eyes, as shownthe input vectorx € R<. The third layer outputy” € R¥ to
Fig. 8, the evoked potential is not observed clearly from thitee NF. The outputs of the NF are normalized and considered
EEG signal measured by only a pair of the electrodes fas thea posterioriprobability. Finally, the Bayes’ rule is used
the artificial photic stimulation. Also, uncomfortable feelingso determine the specific class.
of the subjects may act as an artifact. As a result, part ofl) Structure of the Neural Filter:Fig. 14 shows the struc-
the distributions overlapped each other, so that it seemsttwe of the NF. The unit in the first layer receives the input
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Fig. 11. Classification results under the artificial photic stimulation by LLGMN.

TABLE IV - _
CLASSIFICATION RESULTS UNDER THE ARTIFICIAL PHOTIC STIMULATION g"“"“l Y .
0 ilter 1 ) Z
=1
Number of the learning data N =50 N =100 o ‘2 lljﬁlra; £ é
[3] . . 1lter = .
Dimension of the input vector| d =2| d=6| d=2| d=6 =S—*19| : [Gaussian Mixture{ : gr=s
- e BN 2| xa Neural Network Yk gl &8
subject A Rcla 60.1| 676 624 69.9 5 : El =
(male) Rsd 60| 29| 44, 26 A g é
: T, F < Filter K
subject B Rcla 81.1| 826 837| 845 — cerd yer ¥ —|
(male) Rsd 3.2 32 34 1.7
subject C Rcla 625 649 707, 719 Fig. 13. Structure of the network. The neural filters are serially connected
(male) Rsd 18| 220 120 17 to the LLGMN.
" subject D] Rcla 674| 724] 744 767
(male) Rsd 30 12| 21 17
subject E|  Rcla 67.7| 71.6| 73.8| 755
(male) Rsd 42| 17| 25| 12

Recia : Classification rate(%), Rsd : Standard deviation(%)

85 80 &
ol <w
5 SE. BE
65 SH oa
=]
55 2 ©
g _*
6% 100 § <
4 50 : )
Fig. 14. Structure of the neural filter.
d 330 N
d : Number of the input vector, N : Number of the training data <2)v§i(") are defined as

Fig. 12. Effect of the training data on classification results of artificial photic

stimulation. (2)7,2(71) _ Z(Q,Q)UZ,b(Q)UZ(n—l) +<172)u‘;€<1)v,§") + (")uz
a=1

W™ corresponding to thath outputsy,™ of the LLGMN, 27)

and send$Vv.™ to the second layer. The identity function is (@) = g((2)7,2(n)) 28)

used for the activation function in the first layer.

The second Iayer consists Bfunits. Each unit receives the\ypere (2220 (124! and Oyl denote the weight coeffi-
nth output of the first layer and the: — 1)th output of the cjents between theth and thebth unit in the second layer,
second layer. Also, this layer has the bias inffut= 1). The petween the first layer and tiéh unit in the second layer, and
fully interconnected units keep the internal representation, etween the bias input and tih unit in the second layer,
that the time history of the input data can be considered. Thespectively. The unit in the third layer is connected to all
input to the unitb in the second Iaye@r,t(") and the output the units in the second layer, and the relationship between the
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Fig. 15. Classification results.
input and the output of each unit is defined as TABLE V
B EFrFeCT oF THENF ON CLASSIFICATION RESULTS
(3)7)(71) = Z (273)ua(2)va(n) (29) Eye opening and closing | Artificial photic stimulation
k ko Tk Type of the network LLGMN | LLGMN| LLGMN | LLGMN
a=1 with NF ) with NF
(3), (n) _ (3), () subject A Rl 91.1 94.5 62.4 84.4
Y = 9( Tk ) (30) (male) Rad 0.4 0.3 44 1.4
n) n) ) . subject B Rcla 833 90.4 83.7 92.3
where @7 and @)y, denote the input and the output in (il R 06 08 3410
. . . jectC Rla 88. 93.8 70.7 79.5
the third layer, respectively, anid*u denotes the weight " oale) e ” 5 o o3
coefficient between theth unit in the second and third layers. subject D Rt 81.3 89.7 74.4 80.2
: . L C o L (male) Rsd 1.1 05 | 21 | 02
The identity function is used as thg activation function in (b 1 R 930 934 718 2.4
the fourth layer, and the output is defined as (male) Rsd 06 0.1 25 09
Rcla - Classification rate(%), Rsd: Standard deviation(%)
(4)1/,2") = (374)uk(3)vl(€") (32)

where®4y,, denotes the weight coefficient between the thirg D INPUt vector(d = 2, H = 6, K = 2), shown in Table II,

and fourth layers. Note that the weight coefficidAtdu, IS used. The NF, which includes eight units in the second
functions as a gain. layer, is trained usingV = 168 data series according to the

2) Learning Scheduleif the teacher signal is given only pseudorandom series for 180 s. Then, the ratio of the correct

to the output unit in the NF, the error may backpropagafé@ssification to 422 data, which are not used in the learning,
from the NF to the LLGMN, so that the learning is performeé§ computed.
for both networks at the same time. However, the appropriateFig- 15 shows the effect of the NF on the classification
error backpropagation between the NF and the LLGMN couf@sult (subject A). In the figure, the timing of switching eye
not be guaranteed because of the redundancy of the netwsi@es (or artificial flash light), the input pattern of the LLGMN
structure. (z1,22), the output of the LLGMN(® Oy, 0,), the output
Therefore, we introduce the following two-step learningf the NF ((Yv;,(¥y,), and the classification results are
schedule that divides the learning into the LLGMN and thghown. The outputs of the LLGMN, especially in the case
NF. First, the LLGMN is trained using the training data t®f the artificial photic stimulation, are varied considerably,
represent the statistical model. Then another set of the inplgpending on time, and accurate classification is not realized.
datax(™ € R¢ is given and the LLGMN outputs tha The statistical processing by the LLGMN is not enough in this
posteriori probability Y,f") (k = 1,...,K). Next, the NF case. It can be seen from Fig. 15 that the NF makes the output
are trained using this output data and the teacher S@E@ of the LLGMN considerably smooth and the high classification
(k =1,...,K) are given for each output unit. The learningPerformance is obtained. This is the effect of the NF on the
of the NF is performed according to the learning rule based 6lassification results.
the backpropagation through time [4] because of the presencdable V shows classification results for five subjects. The
of the interconnection in the second layer. mean values and the standard deviations of the classification
3) Effect of the Neural Filter on Classification Resulfo rate for 30 kinds of randomly chosen initial weights are shown.
examine the effect of the NF on the classification result, the both cases, the classification rates tend to improve with the
following experiments are carried out. In the experiments, thise of NF.
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TABLE VI
% A o CLASSIFICATION RESULTS OF THREE TYPES OF THEPHOTIC STIMULATIONS
- B 2w
=84 =5
85 g5 Type of the network LLGMN LLGMN
28 28 with NF
3 g subject A R 75.8 84.4
(male) R 0.5 0.1
subject B R 83.8 91.6
d : Number of the input vector N : Number of the training data (male) R 0.3 0.3
subject C R 69.1 783
@ (male) R 4.5 23
subject D Ry 65.8 74.6
o (male) Ry 1.7 1.8
a
5 8 SE subject E | Rua 772 87.1
e £2 (male) Ry 19 09
§§_ ;;;a R . : Classification rate(%)
g = Rui  : Standard deviation(%)
d : Number of the input vector N : Numbe e training data . . .
. classify the EEG patterns into three different classes, the
®) classification rate is about 80% in these experiments. The
F|g_. _16. Effects of the d|_r'_nenson of the input vector and number of tr@utput of the LLGMN are smoothed out by the NF, taking
training data on the classification results. the time-varying characteristics into consideration
Jight on o - - Table VI shows the classification results for five subjects.
g open L Do Although the high classification performance is not realized
7 close —— P - for subjects C and D, the NF improves the classification rates
g ! IF“’“W ! Lo M W for all subjects. In the future, the feature extraction method
8 - i) SRR N ¥ W 5 ! h
g o ' o i and experimental apparatus for EEG measurements should be
Z reconsidered to improve the classification performance.
g VI. CONCLUSION
&
g The present paper has proposed a new NN based on the LL-
g GMN that can estimate the posterioriprobability for pattern
o classification problems. The parameters of the network, such
as an activation function of each unit, number of layers, and
. | ‘ number of units, can be determined easily in correspondence to
E] 1 i [ Lo | . .
& =l YTV ; the GMM mcorporat_ed in the network. Also,_ Fhe output from
PN : o } the LLGMN can be interpreted as a probability. The forward
350_\..&_‘\_}1\me@4«4&&/[_" o | S— calculation and backward learning rule, which is based on the
! »Classified o Misclassified ! maximum likelihood estimation, can be defined in the same
o lighton)  p— Oju - C— manner as the one of the feedforward NN model. To examine
| | g . .- . .
§ open|T : | | the classification ability of the proposed network, simulation
close WL | o UHEF O EEes O

and experiments have been performed. The results obtained
) o o ~are summarized as follows.
Fig. 17. Classification results of three types of the photic stimulation by . . L. . .
LLGMN.  In the simulation, the statistical structure incorporated in
the LLGMN realized the smooth decision region bound-
Then, we examine the changes of the classification rates aries even for a small sample size of the training data.
depending on the number of the training dafaand the di- < Weight coefficients used in the LLGMN have no con-
mension of the input vectat. Fig. 16 shows the classification straints and are mutually independent, so that the LLGMN
result. Compared to the use of the LLGMN only (see Figs. 10 achieved higher classification performance than that of the
and 12), the classification rates improve considerably and the MLANS even for a small sample size of the training data.
standard deviations of the classification rates keep very smalb In the EEG pattern classification experiments of eye states
values. and artificial photic stimulation for five subjects, the
Finally, additional experiments for three classes of the EEG LLGMN classified the EEG patterns with about 85% and
patterns are performed. Subjects are seated in a dark room 75% of the classification rates, respectively.
and the following three states are used for the classification: LLGMN achieved effective learning and relatively high
closing eyes, opening eyes, and opening eyes with an artificial classification performance, while the learning of the
light. Experimental conditions are the same as the ones used in BPN converged local minima frequently and that of
Figs. 8 and 11. Fig. 17 shows an example of the classification the MLANS needed a large sample size of the training
results. Although it seems to be considerably difficult to data.

0 100 200 300 400[s]
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« In order to cope with time-varying characteristics of the
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