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Adaptive Control and Identification Using One Neural
Network for a Class of Plants with Uncertainties

Toshio Tsuji, Bing Hong Xu, and Makoto Kaneko

Abstract—This paper proposes a new neural adaptive control method
that can perform adaptive control and identification for a class of
controlled plants with linear and nonlinear uncertainties. This method
uses a single neural network for both control and identification, and a
sufficient condition of the local asymptotic stability is derived. Then, in
order to illustrate the applicability of the proposed method, it is applied to
the torque control of a flexible beam that includes linear and nonlinear
structural uncertainties.

I. INTRODUCTION

In recent years, applications of the neural network to adaptive
control have been intensively conducted. For example, Narendra and
Parthasarathy [1] introduced multilayer neural networks for identifi-
cation and adaptive control of nonlinear systems. A number of studies
such as [2]–[5] for adaptive control of unknown feedback linearizable
systems and [6]–[8] for achieving guaranteed performance of the
neuralnet controller have been reported. This is due to the fact that the
neural network has excellent capabilities of nonlinear mapping, learn-
ing ability, and parallel computations. Most of the proposed adaptive
control methods using single neural network can be roughly classified
into four types: the direct neural adaptive control [9], [10], the parallel
neural adaptive control [11], [12], the feedforward neural adaptive
control [13], and the self-tuning neural adaptive control [14], [15].

Yabuta and Yamada [9] proposed the direct neural adaptive con-
trol that replaces a conventional feedback controller with a neural
network. Also, they discussed the stability of the linear discrete-time
single-input-single-output (SISO) plant [10]. Although their method
is quite simple and can be applied to various feedback control
systems, the uncertainty of the controlled plant cannot be identified
and some parameters included in the neural network is quite difficult
to be set. On the other hand, as the parallel neural adaptive control,
Kraft and Campagne [11] and Sadegh [12] presented an adaptive
controller based on the neural network arranged in parallel with a
conventional feedback controller. Their idea is to compensate the
control input computed from the conventional feedback controller
for canceling the effect of the plant uncertainties. Also, Carelliet al.
[13] proposed an adaptive controller using the feedback error learning
[16]. The neural network can gradually modify the control input from
a conventional feedback controller and can finally take the place of
the conventional feedback controller. Moreover, Akhyar and Omatsu
[14] and Khalidet al. [15] presented a self-tuning controller that uses
a set of neural networks for regulating the gains of the conventional
feedback controller in order to improve the performance of the control
system. Their methods could maintain stability of the adaptive control
system through the function of the conventional feedback controller.

For all of the methods presented above using single neural network,
however, even if the adaptive controller of the controlled plant can be
obtained by neural network learning, the uncertainty included in the
controlled plant cannot be expressed explicitly. When the forward
model for the controlled plant is necessary, the controlled plant
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must be identified again by using other identification techniques.
Besides, many of these methods may require long learning time
or result unstability in some practical applications, where there are
uncertainties between the input to the controlled plant and the error
signal required for learning.

Another approach to the neural adaptive control is to utilize
multiple neural networks [1], [17]–[23]. In this approach, one neural
network is dedicated to the forward model for identifying the uncer-
tainties of the controlled plant and the other neural networks may
compensate for the effect of the uncertainties based on the trained
forward model. However, multiple neural networks must be trained
and stability of this approach is quite difficult to be assured.

In this paper, a new neural adaptive control method that can
simultaneously perform adaptive control and identification using
only one neural network is proposed. In the proposed method, an
identification model is composed of a neural network and a linear
nominal model which is approximated for the controlled plant.
The neural network can identify the uncertainties included in the
controlled plant and can adaptively modify the control input computed
from a predesigned conventional feedback controller at the same
time. The neural network is of the multilayer perceptron, where
the weight’s updating rule is the error back-propagation using an
identification error between the model output and the controlled
plant’s output.

This paper is organized as follows. In Section II, a formulation of
the controlled plant, a working principle of the proposed method, a
model of a neural network, and a stability analysis are shown. In
Section III, in order to illustrate the effectiveness of the proposed
method, computer simulations for plant models with linear and
nonlinear uncertainties are carried out. In Section IV, to illustrate the
applicability of the proposed method, torque control experiments of a
flexible beam are performed. Experimental results using the proposed
method are compared with those of other neural adaptive control
methods in order to make clear the distinctive feature of the proposed
method. Finally, Section V concludes the paper.

II. A DAPTIVE CONTROL AND IDENTIFICATION

One of the keys to developing the adaptive control using the neural
network is a way to deal with the unknown nonlinear properties
included in the plant using the neural network. In our approach, the
nonlinear properties are, first, linearized using one of the conventional
approximation technique, and then the nonlinear modeling error is
identified by using the neural network. The same neural network is
also used to cancel out the effects of the nonlinear modeling error on
the controlled variable, so that the single neural network can achieve
not only the identification of the uncertainties but the control of the
plant. First, we derive the proposed method for a class of plants with
linear uncertainty. Then we show that the proposed method is also
effective for the plant with nonlinear uncertainty.

A. Plant Formulation

Let us consider a controlled plant with a multiplicative uncertainty
described by [24]

y(k) =H(z�1)u(k) (1)

H(z�1) =Hn(z
�1)[1 + �H(z

�1)] (2)

Hn(z
�1) =

Bn(z
�1)

An(z�1)
(3)

�H(z
�1) =

�B(z
�1)

�A(z�1)
(4)
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Fig. 1. Block diagram of feedback control system.

where y(k); u(k);H(z�1), and �H(z
�1) are respectively

the output, the input, the controlled plant model, and the
multiplicative uncertainty.Hn(z

�1) is the known, controllable
nominal model andHn(z

�1) 2 RH1 is proper and stable
[25]. Also, z�1 is the delay operator, and the polynomials
An(z

�1);Bn(z
�1);�A(z

�1);�B(z
�1) are respectively given as

An(z
�1) = 1 +

n

j=1

ajz
�j (5)

Bn(z
�1) =

m

i=0

biz
�i (n � m) (6)

�A(z
�1) = 1 +

h

j=1

�jz
�j (7)

�B(z
�1) =

l

i=0

�iz
�i (h � l): (8)

Here, �j ; �i are unknown coefficients andl(� n); h(� m) are
unknown orders of the polynomials�A(z

�1);�B(z
�1):

The general block diagram of the feedback control system is shown
in Fig. 1, wherer(k) is the reference signal ande(k) = r(k)� y(k)
is the error between the reference signal and the plant output.

First, consider a special case in which there is no uncertainty in the
plant (1), that is�H(z�1) = 0: The conventional feedback controller
Gn(z

�1) for the nominal modelHn(z
�1) can be predesigned to

produce a desirable response. The closed loop transfer function
Fn(z

�1) is described by [26]

Fn(z
�1) =

y(k)

r(k)
=

Gn(z
�1)Hn(z

�1)

1 +Gn(z�1)Hn(z�1)
: (9)

Next, consider the general case of�H(z
�1) 6= 0 with the controller

G(z�1) for the plantH(z�1) defined as

G(z�1) = Gn(z
�1)[1 + �G(z

�1)] (10)

where�G(z
�1) represents the modification of the controllerG(z�1):

Thus, the closed loop transfer functionF (z�1) that consists of
H(z�1) andG(z�1) can be given as

F (z�1) =
G(z�1)H(z�1)

1 +G(z�1)H(z�1)
: (11)

If (9) and (10) are equivalent, the response ofF (z�1) using
H(z�1) and G(z�1) can agree with the desirable response [27].
Carrying out an operation using (4) and (9)–(11), we can obtain the
following transformation for this equivalence:

�G(z
�1) = �

�H(z�1)

1 + �H(z�1)
: (12)

However, since�H(z�1) is unknown, the modified value
�G(z

�1) cannot be computed by (12). When�H(z�1) is over
the admissible error’s range of the feedback controllerGn(z

�1);
the control system performance decreases, or yields a steady-state
error, or even turns into unstable performance. In order to solve this
control problem, in the next subsection we propose a new method
that can identify the uncertainty�H(z�1) using a neural network
and adaptively modify the control input from the feedback controller
Gn(z

�1):

Fig. 2. Block diagram of the proposed method using one neural network.

B. Proposed Method

Fig. 2 shows the block diagram of the proposed method in this
paper. The output̂y(k) of the identification model is a sum of the
output of the nominal modelyn(k) and the identified outputyid(k)
that is the output of the neural networkyNN(k) passed through the
nominal modelHn(z

�1): The neural network is trained using the
identified error�(k) between the model’s output̂y(k) and the plant’s
output y(k)

�(k) = ŷ(k)� y(k): (13)

The output of the neural networkyNN(k) modifies the control
input as

�u(k) = �yNN(k): (14)

Next, the working principle of the proposed method is explained.
By using Fig. 1 and (10), the control inputu(k) can be represented as

u(k) =Gn(z
�1)[1 + �G(z

�1)]e(k)

=un(k) + �u(k) (15)

un(k) =Gn(z
�1)e(k) (16)

�u(k) =�G(z
�1)un(k) (17)

where un(k) and �u(k) are the nominal control input and the
modification, respectively.

Also, from (1) and (2) the outputy(k) becomes

y(k) =Hn(z
�1)[1 + �H(z

�1)]u(k)

= yn(k) +Hn(z
�1)�y(k) (18)

yn(k) =Hn(z
�1)u(k) (19)

�y(k) =�H(z
�1)u(k) (20)

where�y(k) is the uncertain output via the uncertainty�H(z
�1):

Substituting (15), (17) into (20), we have

�y(k) =�H(z
�1)[un(k)+ �u(k)]

=�H(z
�1)[1 + �G(z

�1)]un(k): (21)

By (17) and (22), the modification�u(k) can be rewritten as

�u(k) =
�G(z

�1)

�H(z�1)[1 + �G(z�1)]
�y(k): (22)

Substituting (12) into (22), we obtain the following relation between
�u(k) and the uncertain output�y(k):

�u(k) = ��y(k): (23)
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Fig. 3. Neural network used in the proposed method.

On the other hand, by Fig. 2, (13) and (18), the identified error
�(k) can be given as

�(k) = [Hn(z
�1)yNN(k)� yn(k)]

� [Hn(z
�1)�y(k) + yn(k)]

=Hn(z
�1)[yNN(k)��y(k)]: (24)

If the neural network is well trained, we can expect that�(k) finally
becomes zero in (24). SinceHn(z

�1) is the nominal model and is
not identically zero, we can have

yNN (k) = �y(k): (25)

We can see that the output of the plant under the proposed method
can agree with the desirable response using (14). As a result, the
proposed method can adaptively control a class of plants with linear
uncertainty given as (1)–(8) using the neural network. The proposed
control system is designed to cancel out the effects of the second term
in the right side of (18). Therefore, it should be noted that if the output
y(k) can be decomposed as (18) and the uncertainty�y(k) can be
identified by learning of the neural network, the proposed method
is also valid for nonlinear uncertainties included in�y(k): The
effectiveness of the proposed method to the nonlinear uncertainties
included in the plant will be verified in Sections III and IV. The
next subsection explains how the modification�u(k) in (14) can be
realized using the neural network.

C. Neural Network Model

The multilayer neural network used in this paper is shown in Fig. 3.
The numbers of units in the input layer and the hidden layer areN

andM; respectively. The number of units of the output layer is one.
In Fig. 3, wij(k) represents the weight that connects the unitj in
the input layer and the uniti in the hidden layer;vi(k) represents
the weight that connects the uniti in the hidden layer and the output
unit; WWW (k) 2 <M�N ; V (k) 2 <M�1 are the weight matrix of the
hidden layer and the weight vector of the output layer, respectively.
From Fig. 2, the input vector to the neural networkUIN(k) 2 <

N�1

is defined as

UUU
T
IN(k) = [u(k); u(k � 1); � � � ; u(k � q)

�y(k� 1); � � � ;�y(k� p)] (26)

wherep � h; q � l; N = p + q + 1:
Let the unit j’s output of the input layer be denoted asIj =

uj(k) (j = 1; � � � ; N) and the uniti’s output of the hidden layer be
denoted asHi = �(si); wheresi = �N

j=1 wijIj and �(x) is the
sigmoid function defined as

�(x) �
1


tanh(x): (27)

The positive parameter is related with the shape of the sigmoid
function.

Fig. 4 shows the input–output relation of the sigmoid function.
When � 0:1; �(x) can be approximated by a linear function. On
the other hand, when � 1; �(x) has the form of the tanh function.

Fig. 4. Sigmoid function used in the neural network.

Moreover, the output of the output unit is denoted asOk = �(�);
where� = �M

i=1 viHi:

Now, the energy function is defined as

J(k) = 1

2
�
2(k)

= 1

2
fHn(z

�1)[yNN(k)��H(z
�1)u(k)]g2: (28)

The energy function is minimized by changing the weightswij and
vi in the training process. According to the error back-propagation
algorithm [28], the weight updating rules at one sampling time can
be described as

VVV (k + 1) =VVV (k)� �
@J(k)

@V (k)

=VVV (k)� ��(k)Hn(z
�1)

@yNN(k)

@VVV (k)
(29)

and

WWW (k + 1) =WWW (k)� ��(k)Hn(z
�1)

@yNN(k)

@WWW (k)
(30)

where� > 0 is the learning rate.

D. Stability Analysis

This subsection deals with the local asymptotic stability of the
proposed method for the plant (1) near the optimal set of the neural
network’s weights. If the multilayer neural network is used, there
exists the optimal set of the weights that results the identified error
�(k) = 0 [29], [30].

Near the optimal set of the weights,yNN (k) is linearized by

yNN(k) � %VVV
T (k)WWW (k)UUU IN(k) (31)

where% > 0 is the gradient of the sigmoid function.
On the other hand, by (4), (7), (8), and (20), the uncertain output

�y(k) can be written as

�y(k) =

l

i=0

�iz
�i

u(k)�

h

j=1

�jz
�j �y(k)

=���
T
UUU IN(k) (32)

where

��� = [�0; �1; � � � ; �l; 0; � � � ; 0;

��1; � � � ;��h; 0; � � � ; 0]
T 2 <N�1 (33)

is the parameter vector. Thus, from (31), (32), the identified error
�(k) in (24) becomes

�(k) = Hn(z
�1)'T (k)UUU IN(k) (34)

where

'
T (k) = %VVV

T (k)WWW (k)� ���
T 2 <1�N (35)

is defined as the parameter error.
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From Fig. 2 and (34), it can be seen that if the identified error
�(k) can be asymptotically stabilized, the asymptotic stability of the
proposed method can be also guaranteed. Since the nominal model
Hn(z

�1) is controllable and the control inputUUU IN(k) is bounded,
the stability of the parameter error'(k) should be guaranteed in order
to assure the stability of the identified error�(k):

Now, let us consider a Lyapunov function	(k) of the following
form:

	(k) = '
T (k)'(k): (36)

When the difference

�	 = 	(k + 1)�	(k) < 0 (37)

is held, the asymptotic stability of the parameter error'(k) can be
guaranteed by the stipulations of the Lyapunov stability technique. If
the neural network is trained until�2(k) � 0; the sufficient condition
of the local asymptotic stability is to choose the learning rate� as

2

%�kQ(k)k1
> � > 0 (38)

� = sup
0�!�1

jHn(e
�j!T )j (39)

kQ(k)k1 = sup
0�k�k

�fQQQ(k)g (40)

wherekL is the learning time,T is the sampling period,�fQ(k)g
(hereafter, abbreviated as�(k)) is the maximum singular value of
the matrixQ(k) 2 <N�N given by

QQQ(k) =UUU IN(k)Hn(z
�1)[UUUT

IN(k)WWW
T (k)
1(k)WWW (k)

+ VVV
T (k)
2(k)VVV (k)UUUT

IN(k)] (41)

(see Appendix). The diagonal elements!1ii(k); !2ii(k) of the diag-
onal matrices
1(k);
2(k) are given as

!1ii(k) =
�0(�)�(si)

si
(!1ii(k) = 0; if si = 0) (42)

!2ii(k) =�
0(�)�0(si) (43)

where�0(�) is the derivative of�(�): It can be easily seen that when
the small positive learning rate is chosen, the condition (38) can be
generally satisfied.

In this subsection, only the local asymptotic stability for the plant
with linear uncertainty was discussed. If the uncertainty included
in the plant is not limited to a linear one, the stability analysis
might be very difficult to be done. Therefore, we will examine the
stability of the proposed method by using computer simulations and
experiments in Sections III and IV. Future research should be directed
to the stability analysis of the proposed system including nonlinear
uncertainties.

III. COMPUTER SIMULATION

To illustrate the effectiveness of the proposed method, we use
the simulated plants with linear and nonlinear uncertainties. The
simulation results under the proposed method and the conventional
feedback control method are compared.

The nominal model used in the computer simulation is

Hn(z
�1) =

1

1 + 4z�1 + 2:4z�2 + 0:448z�3 + 0:0256z�4

(44)

and the following feedback controllerGn(z
�1) is designed by using

the pole-zero cancellation method [31]

Gn(z
�1) =

1:889 + 7:131z�1 + 2:878z�2

z�1
: (45)

Fig. 5. Responses of the plantH1(z�1) by using the proposed method.

For the reference signalr(k) of a unit step function and a rectangular
function, the responses of the nominal modelHn(z

�1) of (44) using
the controlGn(z

�1) of (45) are respectively shown in Fig. 7 and
Fig. 9 as the desired response (DRE).

In the proposed method, = 1 in the sigmoid function (27) is
used, and the weight’s initial value of the neural network is chosen
as the uniform random number in[�2:0;+2:0]: The learning rate is
� = 0:05 and the sampling time is 10 ms. Also, because the order
of the uncertainty�H(z

�1) is unknown, it is set as the maximum
order, that ish = n(=p); l = m(=q): This resultsN = 5 and
M = 5 in Fig. 3.

The computer simulations performed in this section are divided
into two parts: linear uncertainties and combined linear and nonlinear
uncertainties.

A. Linear Uncertainties

The plant model

H
1(z�1) =

1:1

1:2 + 1:1z�1 + 5:6z�2 + 0:48z�3 + 0:05z�4

(46)

was used with the reference signal of the unit step function. The
simulation result under the proposed method is shown in Fig. 5. The
response of the simulated plant is converging on the desired response
in accordance with the learning of the neural network.

Fig. 6 shows the time history of the maximum singular value
�(k) in (40) during the first iteration of the neural network learning.
It should be noted that other singular values ofQ(k) are always
nonnegative during the simulation. Since the matrixQ(k) includes the
control inputUIN (k); �(k) archives the largest value�(k) = 19:92
at the beginning of the control time where the control input for
the step-like reference signal is rapidly changed. As the result,
� = 0:05 satisfies the sufficient condition (38) and guarantees the
local asymptotic stability of the proposed system. It can be seen
that, if the learning rate� is chosen as a smaller positive number,
the sufficient condition (38) can be generally satisfied for the local
asymptotic stability. However, in order to make the learning more
quickly, � should be large. The upper bound of the learning rate
� in (38) is affected by randomly chosen initial weights and the
control input, so that unfortunately, the stability cannot be checked
beforehand. Future research should be directed to develop an adaptive
regulation of� in order to speed up the learning.

On the other hand, Fig. 7 shows the desired response as the
solid line, the response of the feedback control method by using
Gn(z

�1) = 1 as the dotted line (abbreviated as FBC) and the
response during the fifth learning iteration using the proposed method
as the dashed line, respectively, where the proposed method is
denoted as neuro-based adaptive control (NBAC). We can see that
the response of the proposed method can almost achieve the desired
response by only fifth learning iteration.
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Fig. 6. Time history of the maximum singular value ofQ(k):

Fig. 7. Comparison of control results for the plantH1(z�1):

Fig. 8. Change of the control performance with the initial values of the
neural networks weights.

The control performance using the neural network is closely related
with the initial values of the network weights. When the neural
network is not sufficiently trained, the local asymptotic stability may
not be always guaranteed as shown in Section II-D. Therefore, we
examine the relationship between the control performance and the
initial values of the weights in the proposed method. In the simulation
experiments, ten different sets of the initial values were chosen using
the uniform random numbers within the range[��; �]: The mean-
square-error between the desired response and the plant output for the
unit step reference signal are shown in Fig. 8 with the range�: As
the range of the random numbers becomes large, the mean-square-
error is increasing and the standard deviation is spreading. However,
if smaller initial values are used, the mean-square-error converges
almost zero.

Next, let us consider another plant model described as

H
2(z�1)

=
1:45 + 0:25z�1 + 0:05z�2

0:75 + 3:2z�1 + 1:92z�2 + 0:35z�3 + 0:025z�4
:

(47)

Fig. 9 shows the simulation results using the rectangular function as
the reference signal. It should be noted thatH2(z�1) includes not
only the parameter uncertainties but also increase of the polynomial

Fig. 9. Simulation results for the plantH2(z�1):

Fig. 10. Simulation results for the plant with linear and nonlinear uncertain-
ties.

order of the denominator comparing to the nominal modelHn(z
�1):

Thus, the response of the conventional feedback control (FBC) is
oscillating, while the response of the proposed method almost agrees
with the desired response after the fifth learning iteration.

B. Linear and Nonlinear Uncertainties

Consider the following plant model with linear and nonlinear
uncertainties:

y(t) = H
1(z�1)u(k) + f1� exp[�u(k)]g (48)

wheref1�exp[�u(t)]g is the nonlinear uncertainty. The parameter�

represents the index of nonlinear extent and is set as� = 0:01 in this
simulation. It should be noted thatH1(z�1) includes the parameter
perturbation shown in (46).

The proposed control method was applied to the plant model
(48) with the reference signal of the unit step function and the
feedback controller as (45). Fig. 10 shows the simulation results.
The response during the 15 learning iterations almost agrees with
the desired response shown in Fig. 10. Although the stability of the
proposed system is proved to the plant with only linear uncertainty
in Section II-D, it may be also effective to the class of plants with
nonlinear uncertainty.

IV. TORQUE CONTROL OF A FLEXIBLE BEAM

In this section, we apply the proposed method to a real control
problem that is torque control of a flexible beam as shown in Fig. 11.
While the flexible beam contacts with a fixed object, we would
like to control the joint torque of the flexible beam in accordance
with a reference signal. The contact point between the flexible beam
and the fixed object can be detected by active motion of the joint
[32]–[34]. Therefore, if the joint torque is controlled, the force applied
to the fixed object can be also controlled. However, the dynamic
characteristics of the flexible beam under consideration nonlinearly
depend on the material and shape of the flexible beam, the external
contact force, the contact friction and so on. Moreover, the rotational
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Fig. 11. Flexible beam in contact with an object.

stiffness of the beam is largely changed depending on the position
of the contact point. When the distance from the joint to the contact
point is small, the rotational stiffness is increased. When the contact
point goes away from the joint, the joint becomes less stiffer. Thus,
it is very difficult to obtain the exact dynamic model of the flexible
beam beforehand, and a precise torque control of the flexible beam
cannot be achieved by a conventional adaptive control technique.

Fukuda et al. [35] presented a method of adaptive force con-
trol of a rigid manipulator taking the object’s characteristics into
consideration, and also proposed a feedback decoupling control for
suppressing vibrations in position control of a flexible robot arm [36].
Then, Tokita and Fukuda [37] presented an adaptive force control of
a robotic manipulator using neural networks. Also, Takahashi [22]
used an adaptive neural identifier and the direct neural controller [38]
for controlling a flexible arm. The neural identifier can identify the
parameter of the arm and the neural controller can work on the basis
of the identified parameters. Moreover, using a linearized model of
the flexible arm, robust control of the flexible arm has been actively
studied by using the model matching control andH1 control methods
[39], [40] in recent years.

In this section, the proposed method using one neural network is
applied to the torque control of the flexible beam, and the control
performance and identification ability of the proposed method are
shown with the comparison of the experimental results using the
model reference adaptive control and other neural adaptive control
methods.

A. Experimental Device and Formulation

An experimental device for the torque control of the flexible beam
is shown in Fig. 11 [34]. The beam is steel, 0.32 m in length and 0.8
mm in diameter. The torque sensor is made of a semiconductor gauge
glued on an aluminum sheet. When the beam contacts with a fixed
object, the torque�(k) at the joint of the beam can be measured by
the torque sensor. The actuator is velocity-controlled with the desired
angular velocity _�d(k) of the joint being assigned by the computer.
It should be noted that the driving torque of the actuator can not be
controlled directly.

For this experimental device, first, let us consider a nonlinear plant
described by

�(k) = Hn(z
�1)u(k) + f(u(k)) (49)

where u(k) and �(k) are the input to the actuator and the joint
torque of the flexible beam, respectively;f(u(k)) represents the
nonlinear uncertainty and unknown parameter’s perturbation of this
experimental device; andHn(z

�1) represents the linear nominal
model that is estimated from measured data by using a conventional
identification technique. For the nonlinear functionf(u(k)); it is

Fig. 12. Measured and predicted torque of the flexible beam.

assumed that its linear approximation is given by

f(u(k)) � Hn(z
�1)�H(z�1)u(k) (50)

where�H(z�1) is the uncertainty. Then, (49) becomes the same
form as the plant (1).

Next, the nominal model used in the proposed method is identified.
The desired angular velocity_�d(k) is considered as the input to the
flexible beam, so that the transfer function from_�d(k) to the torque
�(k) at the joint can be approximately described by

Hn(s) =
KsKb

s(tss+ 1)
(51)

whereKs is the gain,ts is the time constant in the velocity-controlled
system, andKb is the elastic constant of the beam. The discrete form
of (51) is given as

Hn(z
�1) =

b1z
�1 + b2z

�2

1 + a1z�1 + a1z�2
: (52)

In order to identify the parameters of (52), the contact point
L = 0:20 m was chosen and the beam was fixed to the environment.
The rectangular input signal with its amplitude of2:0�10�4 rad/s and
a period of 0.5 s was used as_�d after passing through the first-order
low-pass filter with a cutoff frequency 5 Hz. The joint torque was
measured with the sampling frequency 100 Hz. The identified values
of the model parameters werêa1 = �1:20296; â2 = 0:20121; b̂1 =
0:030 63; b̂2 = 0:073 41 by using the least-squares method. The
response of the nominal model with the identified parameters is
shown in Fig. 12 as the thick line. From Fig. 12 we can see that
the error between the output ofHn(z

�1) and the measured torque
of the flexible beam withL = 0:2 m is increasing with time.

Using the same experimental device, the fixed positionL of the
beam was changed. The measured results are also shown in Fig. 12,
where the alternate long and short dashed line represents the result
with L = 0:12 m and the dashed line represents the result with
L = 0:32 m. When the contact positionL is varied, the joint torque
becomes significantly different from the output of the nominal model
with L = 0:20 m. In the next subsection, the proposed method using
the identified parameters forL = 0:20 m is applied to the torque
control of the flexible beam with different contact positionsL:

B. Control Performance

In the neural network used in the experiment, the initial value of the
weight was set as an uniform random number in[�1:0�10�3; 1:0�
10�3]: The learning rate was� = 0:05 and the parameter of the
sigmoid function was = 1: In order to cover the maximum order
(p = 2; q = 2) of the uncertainties�H(z�1); the neural network
consisted of five units in the input layer, ten units in the hidden layer,
and one unit in the output layer. Also, the reference signalr(k) was
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Fig. 13. Experimental results of the torque control of the flexible beam with
L = 0:20 m.

(a)

(b)

Fig. 14. Experimental results of the torque control of the flexible beam
with L = 0:12 m. (a) Proposed method and the feedback control using
Gn(z�1) = 1 and (b) proposed method and the model reference adaptive
control.

of a rectangular form with its amplitude of2:0 � 10�4 Nm and a
period of 5 s. The feedback controllerGn(z�1) wasGn(z�1) = 1
and the control duration was 100 s. The proposed method was applied
to 6 different contact points that wereL = 0:12; 0.16, 0.20, 0.24,
0.28, 0.32 m.

Figs. 13–15 show the experimental results corresponding to the
case ofL = 0:20; 0.12, 0.32 m, respectively. In all cases, the
dashed lines represent the results corresponding to the use of the
feedback controller (FBC)Gn(z�1); the thick lines the results by
the proposed method (NBAC), the thin lines the results obtained
with the model reference adaptive control (MRAC) of Fig. 16. In
the MRAC, as the reference model and the controller, the nominal
model Hn(z

�1) of (52) with the identified parameters(L = 0:2
m) andGn(z�1) = 1 were used, respectively, and the polynomials
Du(z

�1) and Hy(z
�1) of the compensators as shown in Fig. 16

were set asDu(z
�1) = 1 + du1z

�1 andHy(z
�1) = h0 + h1z

�1;

wheredu1; h0 andh1 are the updating coefficients at one sampling
time [26], [41].

In Fig. 13, due to the fact that the same value ofL = 0:20 m
was used for identifying the nominal model, the experimental results
obtained under three control methods were not obviously different.

Fig. 15. Experimental results of the torque control of the flexible beam with
L = 0:32 m.

Fig. 16. MRAC for the torque control of the flexible beam.

Fig. 17. Change of the control performance with the length of the beam.

However, whenL is varied as shown in Figs. 14 and 15, the
feedback control usingGn(z

�1) results significant overshoot or un-
dershoot. The model reference adaptive control works well for linear
parameter perturbation, so that it improves the control performance
slightly. On the other hand, it can be seen from the experimental
results of Figs. 14 and 15, the proposed method always produces
stable responses. It should be noted that the identified parameters of
the nominal model forL = 0:20 m were used for all cases.

Fig. 17 shows the mean-square-error

EL =
1

10

10000

k=9000

e
2(k) (53)

between 90 and 100 s. In the figure, the white circle, the triangle and
the black circle represent the results by the feedback control using
Gn(z

�1); the model reference adaptive control and the proposed
method, respectively. The errors corresponding to the proposed
method are shown with their mean values and standard deviations
for 10 different initial values of the weights. From the results shown
in Fig. 17, we can see that even if there is a large error between the
nominal model and the real dynamics of the flexible beam, the stable
response is always obtained using the proposed method.
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Fig. 18. Predicted torque by the proposed method.

C. Identification Ability

The another feature of the proposed method is that it can construct
the identification model for the controlled plant (seey(k) shown in
Fig. 2). Let us investigate the identification ability of the proposed
method for the contact pointL = 0:12 m after learning of 100 s
which is corresponding to Fig. 15.

Fig. 18 shows the identification model’s outputŷ(k) for the case
of L = 0:12 m with the same input signal as shown in Fig. 12. It
should be noted that the identified parameters forL = 0:20 m were
used as the nominal modelHn(z

�1): We can see that the adaptive
control and identification for the controlled plant can be achieved
using only one neural network simultaneously.

D. Comparison

In this subsection, we make a comparison of the proposed method
with other neural adaptive control methods, which are the self-tuning
neural adaptive control (STNC) [14], [42] the feedforward neural
adaptive control (FNAC) [13], [16] and the parallel neural adaptive
control (PNAC) [11]. Fig. 19 shows three block diagrams of STNC,
FNAC, and PNAC, respectively. It should be noted that the direct
neural adaptive control did not result any stable learning in our
experiments.

In the experiments, experimental conditions were the same as the
ones described in the Section IV-B except for the control duration 60
s. The mean-square-errorEn during the one period of the reference
signal, that is,

En =
1

5

500

k=1

e2[500(n� 1) + k] (n = 1; 2; � � � ; 12)

(54)

is computed for each control method. The sampling frequency was
100 Hz.

Fig. 20 shows the comparison of the learning history. From Fig. 20
the learning speed of the proposed method is faster than those of other
control methods. STNC, PNAC, and FNAC need to learn the inverse
model, while the proposed method requires to learn only the forward
model of the uncertainty included in the controlled plant. Thus, the
learning load of the proposed method is much less than the ones of
other control methods.

Next, the effect of the choice of the weight’s initial value of the
neural network used in adaptive control was examined. In the early
stages of training, the neural network’s output works as an undesirable
disturbance to the controlled plant. If the weight’s initial value that
produces a large output of the neural network is set, it may happen
that the control system becomes unstable and the learning of the
neural network begins to diverge. Thus, the control performance of
the neural adaptive control methods are examined for the range of
the weight’s initial value.

(a)

(b)

(c)

Fig. 19. Block diagrams of the adaptive control systems using neural net-
works. (a) Self-tuning neural adaptive control. (b) Feedforward neural adaptive
control. (c) Parallel neural adaptive control.

Fig. 20. Comparison of the learning history.

The range of the uniform random number[��; �] for the weight’s
initial value was changed and the mean-square-errorE = 1=2(E11+
E12) between 50 s and 60 s [see (54)] was computed as shown in
Fig. 21. For larger values of the range of the initial weight(� > 0:01
for STNC, � > 0:03 for FNAC and� > 0:1 for PNAC), the control
system became unstable and the neural network learning could not be
converged. On the other hand, the proposed method always achieved
stable learning of the neural network and adaptive control for the
range� � 3:0:

V. CONCLUSION

In this paper, the new neural adaptive control method that can
regulate the control input and identify the controlled plant with linear
and nonlinear uncertainties by using only one neural network has
been proposed. The working principle of the proposed method was
explained and the sufficient condition of the local asymptotic stability
near the optimal weight’s set was derived. Computer simulations were
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(a)

(b)

(c)

Fig. 21. Change of the control performance with the initial weights of the
neural network. (a) NBAC and STNC, (b) NBAC and FNAC, and (c) NBAC
and PNAC.

performed to the plant with linear and nonlinear uncertainties, so that
the effectiveness and asymptotic stability of the proposed method
were clearly confirmed. Also the proposed method was applied to
the torque control of a flexible beam in contact with the external
environment. Even though the dynamic characteristics of the flexible
beam were largely varied, the precise control was realized in the
experiment. The comparison of the experimental results under the
proposed method and other neural adaptive control methods was done
in order to show the distinctive feature of the proposed method.

In order to improve the performance of the controlled plant using
the neural network, this paper have concentrated on the control
structure of the controlled plant. The other way to improve the control
performance is to revise the neural network model itself. In the
future, we plan to improve the learning speed of the neural network
and extend the proposed method to a general nonlinear plant and a
multivariable system.

APPENDIX

Near the optimal set of the weights, the updating weight rules (29),
(30) with the sigmoid function can be approximated as follows:

VVV (k + 1) �VVV (k)� ��(k)HHHn(z
�1)


1(k)WWW (k)UUU IN(k)

(55)

WWW (k + 1) �WWW (k)� ��(k)HHHn(z
�1)


2(k)VVV (k)UUU

T
IN(k):

(56)

The diagonal elements of the matrices


1(k) and 


2(k) are
j!1ii(k)j �M1; j!2ii(k)j �M2 whereM1;M2 are constants, since
the sigmoid function is of the tanh function. Therefore,


1(k);
2(k)
are bounded matrices.

By (55) and (56), assuming the identified error to be sufficiently
small, we get

VVV
T (k + 1)W (k + 1)

= [VVV T (k)� ��(k)HHHn(z
�1)UUUT

IN(k)WWW
T (k)


1(k)]

� [WWW (k)� ��(k)HHHn(z
�1)


2(k)VVV (k)UUU

T
IN(k)]

� VVV
T (k)WWW (k)� ��(k)HHHn(z

�1)

� [UUUT
IN(k)WWW

T (k)


1(k)WWW (k)

+ VVV
T (k)


2(k)VVV (k)UUU

T
IN(k)]: (57)

Substituting (34) into the parameter error (57) yields

VVV
T (k + 1)W (k + 1)

� VVV
T (k)W (k)� �HHHn(z

�1)'T (k)UUU IN(k)HHHn(z
�1)

� [UUUT
IN(k)WWW

T (k)


1(k)WWW (k)

+ VVV
T (k)


2(k)VVV (k)UUU

T
IN(k)]

= VVV
T (k)WWW (k)� �Hn(z

�1)'T(k)QQQ(k): (58)

Then substituting (58) into (35) yields

'
T (k + 1) = %VVV

T (k + 1)WWW (k + 1)� ���
T

='
T (k)[��� � �%HHHn(z

�1)QQQ(k)] (59)

where��� 2 <N�N is the unit matrix. So, the difference�	 can
be written as

�	 =	(k + 1)�	(k)

='
T (k)[��� � �%HHHn(z

�1)QQQ(k)]

� [��� � �%HHHn(z
�1)QQQT (k)]'(k)� '

T (k)'(k)

=��%HHHn(z
�1)'T (k)[QQQ(k) +QQQ

T (k)

� �%HHHn(z
�1)QQQ(k)QQQT (k)]'(k): (60)

When the learning rate� satisfies to the following expression

QQQ(k) +QQQ
T (k)� �%HHHn(z

�1)QQQ(k)QQQT (k) > 0 (61)

the condition of�	 < 0 can be guaranteed.
Next, we derive the condition that the learning rate� satisfies (61).

Using the matrix norm, (61) becomes

kQQQ(k) +QQQ
T (k)k1 > �%kHHHn(z

�1)QQQ(k)QT (k)k1: (62)

DefiningQQQ(k) to be a positive semi-definite matrix yields [43]

kQQQ(k) +Q
T (k)k1 = kQQQ(k)k1 + kQQQT (k)k1

=2kQQQ(k)k1: (63)

Finally, (62) can be represented as

2kQQQ(k)k1 > �%�fkQQQ(k)k1g
2 (64)

that is

2

%�kQQQ(k)k1
> � > 0 (65)

where

� = sup
0�!�1

jHHHn(e
�j!T )j: (66)
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