an Article from

Journal of Robotics
and Mechatronics

Copyright © by Fuji Technology Press Ltd. All right reserved.
7 F Daini Bunsei Bldg. 11-7, Toranomon 1-chome Minatoku Tokyo 105 Japan
Tel: 813-3508-0051 , Fax: 813-3592-0648

Tsuji, T. and Ito, K.

Paper:

A Hierarchical Distributed Path Planning for
Redundant Manipulators Based on Virtual Arm

Toshio Tsuji and Koji Ito*

Faculty of Engineering, Hiroshima University
1-4-1, Kagamiyama, Higashi-Hiroshima, Hiroshima 724 Japan
*Toyohashi University of Technology
1-1, Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441, Japan
[Received March 3, 1992; accpted March 20, 1992]

This paper proposes a coilision-free path planning algo-
rithm in the task space based on virtual arms. The vir-
tual arm has the same kinematic structure as the actual
arm except that its end-point is located at the joint or
link of the actual arm. Therefore, the configuration of
the actual arm can be represented as a set of end-points
of the virtual arms, and the path planning for multi-joint
manipulators can be performed only in the task space.
Our method adopts a hierarchical strategy which con-
sists of the global level, the intermediate level, and the
local level. The global level plans the collision-free end-
point trajectory of the actual arm based on the global
representation of the task space. The intermediate level
generates the subgoals for the actual and virtual end-
points based on the current positions and the actual end-
point trajectory specified by the global level. The local
level moves each end-point to the corresponding subgoal,
avoiding the close obstacles based on the local informa-
tions of the task space. The effectiveness of the method
is verified by computer simulations using a planar
manipulator with redundant joint degrees of freedom.

Key-words: Obstacle avoidance, Path planning, Multi-
joint manipulator, Virtual arm

1. Introduction

The problem of path generation, including obstacle
avoidance, is one of the important issues in the realization
of autonomous robots, and it has been studied actively. The
conventional methods of obstacle avoidance for multi-joint
manipulators primarily take an approach that involves the
expression of postures and task environments of
manipulators in the joint space where the paths are planned.

In multi-joint manipulators, the relation not only between
end-points and obstacles, but also between the entire arm
and obstacles, must be considered. In the joint space, the
posture of a manipulator can be expressed by a single point
so that it is easy to judge interference between an obstacle
and the entire arm. However, environments and information
expressed in the task space must be converted to those for
the joint space, and more complicated conversion is required
with an increase in the number of joint degrees of freedom.
For example, in free space methods represented by a con-
figuration space method by Lozano-Perez,'> the amount of
computation to obtain free space increases exponentially

210

with an increase in the number of degrees of freedom of a
manipulator. In the method of reducing the dimensions of
a configuration space by approximating environment with
simple shapes,?* the approximation might erase paths for
obstacle avoidance. Furthermore, it involves problems such
as a lack of versatility because of dependence of the
manipulator structure.

Consequently, the development of a method for obstacle
avoidance in the task space which does not require compli-
cated conversion into the joint space is necessary. In the
task space, sensor information such as vision can be directly
utilized, and there is a possibility of realizing practical
obstacle avoidance which is nearly independent of the
mechanical features of manipulators, such as the number of
joint degrees of freedom. However, for this purpose, it is
necessary to express interference between the entire arm and
obstacles in the task space for planning of motions of not
only the end-points but the entire arm.

In the conventional methods for determining the motions
of end-points and the entire arm using the potential func-
tions,>” it is probable that the movement toward the goal
competes with that generated by repulsion from an obstacle,
thus halting the motion. This is because global information
in the task space is not used. The method which combines
planning for the end-point trajectory based on global infor-
mation and the potential method® seeks the shortest path
from an end-point to a goal on the safety first graph. There-
fore it is difficult for a robot arm to apply the method for
complicated task environments which require the round-
abouts of end-points. As stated above, very few studies
have addressed the problem of global obstacle avoidance in
the task space.

On the other hand, the authors previously proposed a
method for generating trajectories of multi-joint
manipulators using the concept of a virtual arm as well as
a method for local obstacle avoidance in the task space.”
The virtual arm is a virtual manipulator which has an end-
point on a joint or a link of the relevant manipulator
(hereafter referred to as an actual arm); however, it has
mechanical parameters, such as link length, that are identical
to those of the actual arm. By defining a multiple number
of such virtual arms, the postures of the actual arm can be
expressed as a set of end-points of virtual arms, thus ad-
dressing the problem of path generation for obstacle
avoidance in the task space.

In this paper, a hierarchical obstacle avoidance method
is proposed utilizing local obstacle avoidance by the virtual
arm. The method is composed of global, intermediate, and
local levels. At the global level, the end-point moving path

Journal of Robotics and Mechatronics Vol.4 No.3, 1992

of the actual arm is planned before movement by using
information of the entire task environment. At the inter-
mediate level, the current end-point position of each virtual
arm is compared to the path obtained at the global level.
This is performed in order to generate subgoals which
should be reached by the end-point of the actual arm and
each virtual end-point in time. Subsequently, at the local
level, the entire manipulator moves by performing a motion
toward the subgoal while each end-point avoids interference
with obstacles. This allows the treatment of global infor-
mation over the task space at the global level, and local
information in the vicinity of the manipulator at the local
level. v

In Chapter 2, the kinematics of the virtual arm will be
described as well as the method of generating the trajectory
of the actual arm from the desired position of the end-point
of each virtual arm. Then, in Chapter 3, a hierarchical
obstacle avoidance method will be proposed, and algorithm
at each level will be explained. Finally, in Chapter 4, the
effectiveness of this method will be ensured by computer
simulation, and it will be clarified that obstacle avoidance
1s also available in the complicated task environments.

2. Definition and Kinematics of Virtual Arm

2.1. Definition of Virtual Arm”

The relevant manipulator (actual arm) is a multi-joint
manipulator with m joint degrees of freedom. The task
space is an orthogonal coordinate system with the base of
the actual arm as its origin (Fig.1).

In contrast to the actual arm, a virtual arm is defined
which has an end-point on a joint or a link of the actual arm.
Figure 2 shows an example of setting three virtual arms for
a 4-link manipulator. The feature of the virtual arm is the
use of parameters such as the base position, joint angle, and
link length of each virtual arm corresponding to those of the
actual arm. Here, (#-1) virtual arms are generally to be set,
and the actual arm is regarded as the n-th virtual arm. This
allows the postures of the actual arm to be expressed as a
set of virtual end-points in the task space. Planning a trajec-

Fig. 1. Redundant manipulator.

Journal of Robotics and Mechatronics Vol.4 No.3, 1992

A Hierarchical Distributed Path lslanning

tory, along which each virtual arm avoids obstacles, enables
the consideration of obstacle avoidance motions of the entire
actual arm only in the task space.

Now, let the end-point displacement of arm i be denoted
as dX; = (dX;1, dXpn, - . dX»)T, and let also the joint angle
displacement of the actual arm be denoted as d6 = (d6;, d8,,
-, d0,)7; where [is the degree of freedom of the task space,
the relation between the end-point of the arm i and the joint
angle displacement of the actual arm can be expressed as
follows:

dX,= J(0)do (i= 1,2, -n)

where J(8)eR*" is the Jacobian matrix with respect to the
i-th virtual end-point (hereafter referred to as J).

When equation (1) is concatenated regarding all arms,
the following are obtained:

dX,=Jdo 2)
and
dX] J1
dX, b
X,y =1 - o= 3)
dx, g,

where dX.€R" is a vector concatenating the displacement
of each end-point, and Je R™ is a matrix concatenating the
Jacobian matrix of each arm. The definition of the virtual
arm indicates that the arm / includes arm 1 through arm
(i-1), so that the structure of J has regularity and can be
calculated with ease.

2.2. Inverse Kinematics of Virtual Arm

In order to move the actual arm, it is necessary to obtain
the joint angle displacement dB from the desired virtual
end-point displacement dX, calculated in the task space.
This problem results in the solution of the simultaneous
equations (3), and the optimal solution is given by:”

d0 = J; (JTWT,) ™ JTWdX,*

z z T

{a) actual arm

(b) virtual arm
Fig. 2. Virtual arms for a four-link planar manipulator.

211

Tsuji, T. and Ito, K.

position of the matrix J, satisfying the following:

and rank(J)=rank(J,)=rank(J,)=p. Furthermore, We R"™" is
a positive definite weighing matrix, which is to be expressed
as:

W=diag- [wino Wi Wan, Wae w1 L L L L (6)

where wy is a weighing factor for the j-th element of the
desired end-point displacement of arm 7, and regulating this
value allows the assignment of priority for each virtual end-
point. In addition, the resulted end-point displacement dX,
of each arm can be calculated from equations (2), (4), and
(5) as follows:

AXy =T (JEWIY WdX* (7

As stated above, when the desired virtual end-point dis-
placement dX," of each virtual arm is given, the joint angle
displacement of the actual arm, for realizing the motion as
much as possible, can be obtained.

In the next chapter, a method is proposed in which global
information of the task space is combined hierarchically
with local information around each virtual end-point in
order to determine the desired displacement of each virtual
end-point.

3. Hierarchical Obstacle Avoidance Method

In this paper, the obstacle avoidance of a multijoint
manipulator is considered in the following two steps. The
first is global motion planning to provide an end-point path
from the initial position to the goal point using information
of the entire task space, which is performed before the start
of motion to avoid the halt of motion.

The second is local motion planning to avoid collision
with obstacles in response to surrounding conditions during
movement. Figure 3 shows a schematic diagram for the
obstacle avoidance method proposed in this paper. At the
global level, the rough moving path of the actual end-point
is planned before the motion by using global information of

SYMBOLIG The global level

A

deadlock a collison-free path

The intermediate level

positions of

virtual arms subgoals

NUMERICAL The local level

Fig. 3. The hierarchical structure for collision-free path plan-
ning.

212

the entire task environment. At the intermediate level, a
symbolic path obtained at the global level is converted to
numeric information called a subgoal and sent to the local
level. Subsequently, at the local level, each virtual arm
performs a motion toward the subgoal while avoiding
obstacles using local information around its end-point. As
stated above, the hierarchical combination of each level per-
mits the flexible handling of global or local information
according to situations, as well as simplified function at
each level.

In the next section, algorithm at each level will be ex-
plained focusing on the two-dimensional (2D) task space for
simplification. '

3.1. Global Level
(1) Region Graph

Free space in the task space is divided into regions in
order to plan the rough moving path of the actual end-point.
In this method, the task space is scanned in the specified
direction (x-axis direction) in order to detect the edges of
obstacles, and region division is performed with those parts
as boundaries (see Fig.4). In this case, to prevent the
generation of very narrow regions in the parts where
obstacles are close to each other, dangerous areas are set

B Obstacle Dangerous area
Fig. 4. Divided regions in the task space.

@ Base region

Fig. 5. A region graph.

Journal of Robotics and Mechatronics Vol.4 No.3, 1992

around the obstacles and are also regarded as obstacles in
the division of regions.

Next, based on the obtained regions, a region graph is
formulated in which region numbers are nodes and the ad-
jacent regions are connected with links (see Fig.5). The
base part of the manipulator is treated as an obstacle in the
division of regions. It is assigned the region number 0 as a
base region in formulating the region graph.

The links of the region graph are provided with weights,
which are the distances between the regions obtained by the
following procedure.

[Method of weight calculation for region graph (see Fig.6)]
Step 0 : Preparation

A region in which the goal point exists is called a refer-
ence region, and the goal point is called a reference point.
In Fig.6, region 2 becomes the reference region. In this
case, the distance from the reference region to the goal point
1s set to zero.

Step 1 : Calculation of weights between reference and ad-
jacent regions

In a region adjacent to the reference region, the point
closest to the reference point on the boundary is called the
neighboring point of the adjacent region. In Fig.6, when the
reference region is region 2, the adjacent regions are regions
1, 4, and 5 and the corresponding neighboring points are
shown in the figure. Distances between the neighboring
points and the reference point are the weights of links be-
tween the reference region and the adjacent regions. At the
same time, the values obtained by adding a distance between
the reference region and the goal point to the weights are
the distances between the adjacent regions and the goal
point.

Step 2 : Updating reference region

Processing is completed when all link weights are calcu-
lated. Otherwise, out of the regions which have not been
used as the reference region, the region which is closest to
the goal point is designated as the new reference region and
its neighboring point as the new reference point; processing
returns to Step 1. In Fig.6, the reference region is updated
in the order of regions 2, 4, 1, and 5.

In this method, the scanning direction was limited to a
single direction so that in the case in which there is a con-
cave obstable, as in the region 5 in Fig.6, the weights (dis-
tances) between regions may not simply be regarded as
straight distances between the reference point and neighbor-
ing points. In this case, visibility to the neighboring points

1

® Neighboring point

Fig. 6. Computation of link weights.

Journal of Robotics and Mechatronics Vol.4 Nd;3, 1992

A Hierarchical Distributed Path Planning

is judged in order to correct them. Visibility judgement is
to decide whether or not the relevant point (here a neigh-
boring point) is visible without being screened by obstacles.
When it is not visible, the shortest path to the adjacent
region is obtained by detouring the obstacles, as in Fig.6, in
order to correct the neighboring point. This visibility judge-
ment is also used in the generation of subgoals at the inter-
mediate level as will be described later.

The region graph formulated in the manner described
above represents paths in the task space as the positional
relation with obstacles. The paths in the region graph do
not represent coordinates in the task space but rough paths
such as they pass through the specified obstacles. There-
fore, a path between two points in the task space can be
expressed in a quite simply and symbolically as a path be-
tween regions which include those points. Furthermore,
the region graph does not depend on the initial posture of
the actual arm; therefore, once generated, it is valid unless
the arrangement of the obstacles is altered.

(2) Search for Desired Path of Actual End-Point

The moving path of the actual and-point is determined
using the region graph. In this method, the shortest path is
searched from the region, including both actual and virtual
end-points to the goal region. The shortest path from the
virtual end-point to the goal region means the path from the
actual end-point through the region including the virtual
end-point to the goal region. This allows consideration of
the roundabout path of the actual end-point in the form of
a search for the shortest path.

In the following, the method of generating the moving
path of the actual end-point is explained. Figure 4 is taken
as an example in which three virtual arms each have an
end-point on the joint except for the first joint.

[Method of searching desired path of actual end-point]
Step 0 : Finding the region including actual arm

Regions including the actual arms are obtained in the
initial posture. In Fig.4 they are (0, 9, 6, 3, 1).
Step 1 : Search for shortest path

In the region graph, the shortest path is obtained from
each region including the virtual end-point to the goal
region. This can easily be calculated by expanding the
region which has the shortest distance to the goal point out
of the adjacent regions from each region including the vir-
tual end-point up to the goal region. In Fig.4, the following
paths can be obtained from each virtual arm:

Virtual arm 1 — (9, 8, 4, 2)

Virtual arm 2 — (3, 6, 5, 2)

Virtual arm 3 — (3, 1, 2)

Virtual arm 4 {(Actual arm) — (1, 2)
Step 2 : Feasibility

Find a sequence of regions check in which the actual arm
is considered to exist finally when the actual end-point
traces the path obtained in Step 1 (final posture region).
This can be determined by concatenating arm existence
regions from the base to the virtual end-point to paths ob-
tained in Step 1 and deleting the sequences of overlapping
region numbers. In Fig4, the following results are ob-
tained:

Virtual arm 1 — (0, 9, 8, 4, 2)

Virtual arm 2 — (0, 9, 6, 5, 2)

Virtual arm 3 — (0, 9,6, 3, 1, 2)

Virtual arm 4 — (0, 9, 6, 3, 1, 2)

Subsequently, in order to judge whether or not, the ob-

213

Tsuji, T. and Ito, K.

tained is feasible, a distance is calculated from the base
along the final posture region to the goal point. The dis-
tance is compared to the total length of the actual arm. If
the former is shorter than the latter, then the path is regarded
as feasible. In Fig.4, the path obtained from virtual arms 1
and 2 is judged as feasible.

Step 3 : Selection of path

From among feasible paths, the path from the virtual
end-point close to the actual end-point is selected as a path
with a small amount of movement of the end-point. In
Fig.4, the path of virtual arm 2 is selected.

Step 4 : Generation of desired path of actual end-point

Find the moving path of the actual end-point along the
selected path in Step 3. First, a branching region is deter-
mined by comparing the final posture region with the arm
existence region. Then, combining the shortest path of Step
4 with the path from the actual end-point to the correspond-
ing virtual one gives the desired path of the actual end-point.
In Fig.4, region 6 becomes the branching region, and the
moving path of the actual end-point is (1, 3, 6, 5, 2), com-
bining the backward path to the branching region (1, 3, 6)
with the forward path from the branching region to the goal
point (6, S, 2).

The method of generating the path of the actual end-point
has been described as function at the global level. This
method allows the symbolic determination of paths in the
region graph, and its feasibility judgement minimizes the
possibility of deadlock by the generated path. Furthermore,
it enables parallel processing from path searching to
feasibility judgement by each virtual arm, and it has the
advantage that the search is very simple.

3.2. Intermediate Level

At the intermediate level, a subgoal is generated for each
end-point according to the desired path given at the global
level. For the actual end-point, a subgoal is always used
until it reaches the goal point. For the virtual end-points,
subgoals are used until the actual end-point reaches the
branching region. When the actual end-point reaches the
branching region, the generation of subgoals is completed.
The method of generating subgoals is as follows:

[Subgoal generation method (see Fig.7)]

Goal

+

@ Subgoal
O Modified subgoal

Fig. 7. Subgoals for each virtual end-point.

214

(1) Actual end-point and virtual end-point located on the
side of actual end-point from branching region

A neighboring point on the boundary of the current end-
point region and the region to be entered next is set as a
candidate for a subgoal. Then, the visibility of the subgoal
candidate is checked (see Section 3.1). When it is visible,
the candidate is regarded as the subgoal. When it is not
visible, the comer of an obstacle is searched to modify the
subgoal (see Fig.7). While a motion is in progress toward
this modified subgoal, visibility check for the subgoal can-
didate before modification is constantly performed. At the
point where visibility is satisfied, the subgoal is shifted to
the candidate. '

(2) Virtual end-point located on the side of base from
branching region

In order to facilitate the backward motion of the entire
arm, the virtual end-point, which is next closer to the base
from the relevant virtual end-point, is set as a subgoal.

At the intermediate level, when each end-point reaches
the subgoal, it is updated according to the method described
above. These subgoals are then sent to the subsequent local
level in order to move the entire arm.

3.3. Local Level

At the local level, the desired displacement of each end-
point is locally planned according to the subgoals given by
the intermediate level. Then, the actual motion of the arm
is determined from this desired displacement. Note that
dangerous regions around obstacles set in Section 3.1. are
not included in the obstacles at the local level.

[Method of local obstacle avoidance™]
Step 1 : Search for obstacles

Search for obstacles with respect to the end-point of the
arm { (i = 1, 2, ..., n), obstacles in the searched area are
measured in order to obtain their coordinates and distances
from the end-point.

Step 2 : Determination of forward direction

With respect to the obstacles in the searched area, vectors
weighted by the reciprocals of their distances are composed,
and the unit vector is regarded as an avoidance direction
vector. When there is no obstacle in the searched area, the
avoidance direction vector is a zero vector. In the case of
the arm given a subgoal from the intermediate level, a unit
vector in the target direction toward the subgoal is com-
posed with the avoidance direction vector in order to obtain
the unit vector in the forward direction o;. As for the arm
i, without being given a subgoal, the avoidance direction is
regarded as a forward direction vector ;. However, virtual
arms which are not given subgoals and have zero avoidance
direction vectors are excluded from the following treatment.
Step 3 : Calculation of desired displacement for virtual
end-point.

Among obstacles in the searched area for the arm i, a
distance from the closest obstacle to the end-point is set to
doi*. Then, the desired displacement of the virtual end-point
of the arm i, dX;", is obtained as follows:

8; = min. [(i), d,;']

where f{i) is a monotone increasing function and reduces the
displacement of the virtual arm close to the base.

Journal of Robotics and Mechatronics Vol.4 No.3, 1992

Step 4 : Setting of weighting matrix W

‘When there are obstacles in the searched area, the value
of the weighting matrix W of equation (6) is obtained ac-
cording to the distance from the closest obstacle to the end-
point:

1) Virtual arm (i = 1, 2, ..., n - 1)

k,
W meE W (10)
2) Actual arm
Lok,
Wy, 1= _Wn,l—m‘f‘gg‘ (11)

where d, is the distance from the actual end-point to the
subgoal, and &, and k, are positive parameters. However,
when an obstacle does not exist in the searched area, the
weight of the virtual arm is set to 1 and that of the actual
arm is set to k,/d,.
Step 5 : Trajectory generation of actual arm

The inverse kinematics of the virtual arm is solved using
equation (4) from the desired displacement of the virtual
end-point, dx,”, and the weighting matrix, W, in order to
obtain the joint displacement of the actual arm, d6, and the
resulted end-point displacement of each arm, dX,. In this
case, as stated in Step 2, virtual arms which have no obstacle
in their searched area and which have been given no sub-
goals from the intermediate level are excluded from equa-
tion (2). In other words, no restrictions are placed on the
motions of virtual arms that are not directly associated with
obstacle avoidance at this time.
Step 6 : Judgement of interference with obstacles

The end-point position of each arm is determined from
the obtained end-point displacement in order to examine
interference with obstacles. When there is interference, the
weight with respect to the arm in the weighting matrix W
is multiplied by k;, and control returns to Step 1. The same
procedure is repeated until the end-point of the actual arm
reaches the subgoal.

The hierarchical obstacle avoidance method can execute
most of calculations with respect to virtual arms in parallel,

A Hierarchical Distributed Path Planning

and it can efficiently perform motion planning for a multi-
joint manipulator based on the expression of obstacles in the
task space. Furthermore, it hierarchically utilizes global and
local information of the task environment so that the moving
paths of end-points can easily be regenerated on the global
level, even in the case in which a motion comes to a dead-
lock at the local level. In the next section, the effectiveness
of this method will be verified by computer simulation.

4. Simulation Experiment

A graphic simulator is formulated in a work station
(NWP-831, Sony Corporation) using the hierarchical
obstacle avoidance method proposed in this paper. C was
used as the programming language, and an X-window sys-
tem was adopted. The relevant manipulator was of a planar,
multi-joint type with rotary joints for simplification.

Figure 8 shows an example of simulation results. The
actual arm was a planar arm with 5 degrees of freedom and
a link length of 40cm. Nine virtual arms were set consisting
of each joint except for the first joint, and those having
end-points at the middle of each link (n = 10). The searched
area around each end-point was a circle 12cm in radius. In
setting virtual arms, the searched area around each end-point
is arranged to cover the entire actual arm in this way, in
consideration of interference between the entire actual arm
and obstacles. Parameters used in the simulation were kg =
800, k, = 500, and &, = 100, and the dangerous regions
against obstacles (see Section 3.1.) were set to 12cm, the
same as the searched area. The actual arm was also
regarded as an obstacle to avoid interference with itself at
the intermediate and local level.

Figure 8 shows an example of application to an environ-
ment in which a motion deadlock will occur by obstacle
avoidance methods based on the conventional local poten-
tial method and the shortest path of the actual end-point.
The proposed method can generate a roundabout path for
the actual end-point at the global level. Therefore, obstacles
are skillfully avoided to ensure satisfactory motions. Fur-
thermore, it is found that the motions of obstacle avoidance
of each virtual end-point are reflected on the movement of

13

(®)

Fig. 8. Simulation results of the hierarchical collision-free path planning.

Journal of Robotics and Mechatronics Vol.4 No.3, 1992

215

Tsuji, T. and Ito, K.

o

(c)

Fig. 9. Simulation results of the hierarchical collison-free path
planning for unknown obstacles.

the entire actual arm.

Figure 9 shows a response for in the case in which an
obstacle that was not present in path generation at the global
level was found during motion. After the actual end-point
reached the boundary of regions 2 and 5 under the same
conditions as in Fig.8(a), a new obstacle was placed. Atthe
local level, motion is determined based on local information
around each end-point at that time, thus an unknown
obstacle can be found and avoided. In Fig.9(a), the goal
point is reached without deadlock only by the function at

216

the local level. Furthermore, even in the case in which
motion comes to a deadlock at the local level (Fig.9(b)), an
end-point is skillfully moved to the goal point by regenerat-
ing a new end-point moving path by returning to the global
level with the current posture as an initial posture (Fig.9(c)).
As stated above, this method works well even for quite
complicated task environments requiring the roundabouts of
end-points.

5. Conclusion

In this paper, a hierarchical obstacle avoidance method
for a multi-joint manipulator using virtual arms has been
proposed. The method features the following points.

(1) The postures of a manipulator are expressed as a set
of virtual arms, so that the obstacle avoidance of multi-joint
manipulators can be treated in the task space. Consequent-
ly, the treatment is not affected very much by the mechanical
properties of the manipulator, such as the joint degree of
freedom.

(2) Because global and local information is utilized
hierarchically, changes in task environments can be flexibly
responded to and the regeneration of motions is available.

(3) The roundabout path of the actual end-point can easi-
ly be obtained by searching for the shortest path from each
virtual end-point. This enables planning of moving paths
with low possibility of deadlock.

(4) Most treatment with respect to virtual arms can be
executed in parallel and distributed way, thus allowing the
reduction of computation time.

As stated above, this method is an algorithm with low
possibility of deadlock, and it is suitable for parallel process-
ing. However, there is no theoretical guarantee of satisfac-
tory operation for all possible environments, and motion
may come to a deadlock in an extremely complicated en-
vironment. The authors intend to study an autonomous and
distributed method that a comnmunication function among
virtual arms is introduced and a motion is determined by the
process in which each arm considers the other arm, thus
improving the motion of the arm.

Also, in this paper, simulation was performed in the 2D
task space for simplification. For the 3D task space, this
method can basically be applied when scanning in the
division of regions is expanded from line to plane, and when
the search for obstacles at the local level is expanded from
circle to sphere. In the future, a more effective obstacle
avoidance method is scheduled to be developed for the 3D
space by considering treatment at each level.

We would like to thank Jun Kaneta for computer simula-
tions. A part of this work was supported by the scientific
research fund (62460142, 01750399) from the Ministry of
Education.

References:
1) T. Lozano-Perez and M.A . Wesley, “An algorithim for planning col-

lision-free paths among polyhedral obstacles”, Commun. ACM,
Vol.22-10, pp.560-570, 1979.

2) T. Lozano-Perez, “Automatic planning of manipulator transfer
movements’’, Automatic. planning of manipulator transfer
movements”, IEEE, Trans. SMC, Vol.11-10, pp.681-698, 1981.

3) T. Lozano-Perez, “A simple motion planning algorithm for general
manipulators”’, IEEE, J. Robotics and Automation, Vol.3-3, pp.224-

Journal of Robotics and Mechatronics Vol.4 No.3, 1992

238, 1987,

4y B.R. Donald, “A Search Algorithm for Motion Planning with Six

Degrees of Freedom,” Artificial Intelligence, Vol.31-3, pp.295-353,
1987.

5y M. Okunomi and M. Mori, “‘Decision of Robot Movement by Means

of a Potential Filed,”” Advanced Robotics, Vol.1-2, pp.131-141, 1986.

{ 6);:{‘0. Khatib, “Real-time obstacle avoidance for manipulators and

W inobile robots”, Int, J. of Robotics Research, Vol.5-1, pp.90-98, 1986.

7y E. Rimonal, D.E. Koditschek, ‘“Exact Robot Navigation Using Cost

Functions,” Proc. of IEEE International Conference on Robotics and
Autormation, pp.1791-1796, 1988.

8) H. Hirukawa and S. Kitamura, “A Collision Avoidance Method for
Robot Manipulators Based on the Safety First Algorithm and the
Potential Function”, J. of the Robotics Society of Japan, Vol.5-3,
pp.171-179, 1987.

9) T. Tsuji, S. Nakayama, K. Ito: Trajectory Generation for Redundant
Manipulators Using Virtual Arms, Proc. of ICARCY, pp.554-558
(1990).

e

Journal of Robotics and Mechatronics Vol.4 No.3, 1992

A Hierarchical Distributed Path Planning

Name:
Toshio TSUNL

Affiliation:
Research Associate, Faculty of En-
gineering, Hiroshima University

Address: .

1-4-1, Kaganigama, Higashi-Hiroshima, Hiroshima 724, Japan

Brief Biographical History:

1985 Research Associate of Hiroshima University.

1989 Doctor of Engineering, Hiroshima University.

Main Works:

* “Distributed Trajectory Generation for Redundant Manipulators Based
on Virtual Arms”, Trans. of the Society of Instrument and Control En-
gineers of Japan, Vol. 27, No.12.

Membership in Learned Societies:

* JEEE.

¢ The Society of Instrument and Control Engineers of Japan.

» The Robotics Society of Japan.

Name:
Koji ITO

Affiliation:
Professor, Department of Information
and Computer Sciences, Toyohashi
University of Technology

Address:

1-1, Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441, Japan

Brief Biographical History:

1970 Research Assistant at Nagoya University.

1979 Associate Professor at Hiroshima University.

1992 Professor at Toyohashi University of Technology.

Main Works:

* “Biological and Robotic Motion Control”, SICE (1991).

* “An EMG Controlled Prosthetic Forearm with Three Degrees of
Freedom Using Ultrasonic Motors”, Trans, SICE, Vol.27, No.11 (1991).

Membership in Learned Societies:

* The Society of Instrument and Control Engineers (SICE).

* The Robotics Society of Japan.

» The Institute of Electronics, Information and Communication Engineers
(IEICE).

217

