Systems and Computers in Japam, Vol. 22, No. 11, 1991
Iranslated from Denshi Joho Tsushin Gakkai Ronbunshi, Vol. 73-DII, No. 12, December 1990, pp. 1993-2000

Extraction of Surface Orientation from Texture Using
the Gray Level Difference Statistics

Hidegi Matsushima, Nonmember, Mutsuhiro Terauchi, Toshio Tsuji,
and Koji Ito, Members

Faculty of Engineering, Hiroshima University, Higashi-Hiroshima, Japan 724

SUMMARY

The problem of extracting orientation
of an object surface from a monocular image
is one of the important tasks in computer
vision. Most of the existing methods for
extracting surface orientation are ones using
the structural features of texture such as
texel and edge. However, to represent tex—
ture features statistically is shown to be
effective also in texture discrimination
and segmentation. Thus, in this paper we
propose a method for extracting surface
orientation using the statistical feature of
a texture image.

First, we assume uniformity of a proba-
bility density function of difference sta-
tistic on object surface; then using the
fact that the difference statistics depend
on the geometric factor of length and orien-
tation, we formulate the relationship be-
tween distortion of a density function in an
image caused by perspective projection and
the object surface. Then we derive an al-
gorithm for finding the object surface
orientation by search based on this formula-
tion. In addition we apply this method to
simulation images and real images to show
its effectiveness. This enables us to ex~
tract object surface directly from a gray
level image without extracting the texel or
edge (whose extraction is required in the
existing methods).

1. Introduction

The problem of reconstructing a 3-D
world from a 2-D image is one of the impor-
tant themes of computer vision. In this
paper we consider the problem of extracting
object surface orientation from 2 monocular
view image, which is one of important steps
in reconstructing a 3-D structure. This

100

problem becomes an ill-posed problem since
information is lost due to reduction of a
3-D scene to 2-D image and thus uniqueness
of solution is not guaranteed. Therefore,
in order to solve this problem we need to
given certain additional information and to
use it as a constraint.

When there is a peculiar texture on an
object surface, a number of methods that
effectively utilize its property have been
proposed thus far. Gibson [1] noted texels
which are constituent elements of texture
and showed that under assumption that it
distributes on object surface with equiva-
lent density, the orientation of the object
surface can be estimated using distortion of
texel density on projected images.

Ohta et al. [2] extracted the vanishing
point by formulating the relationship be-
tween area ratic of texels and distortion
due to projection and found object surface
orientation. These assume that texel struc-
tures are known in advance. However, in the
case in which a texel structure cannot be
specified, it is difficult to extract texels
from a real image and error grows depending
on the precision of extracted texels.

On the other hand, Kender calculated
the orientation of object surface with paral-
lel edges as clues using the property that a
group of parallel lines on object surface
are projected into a group of half-lines
whose endpoint is one point (the vanishing
point) on images.

Witkin [4] estimated surface orienta-
tion by a stochastic method, noticing direc-
tions of edge segments of texels and speci~
fying the probability density distribution
of edge directions on object surface in
advance.
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Fig. 1. The coordinate systems and the

perspective projection.

Further, Aloimonos [5] extended the
assumption by Gibson and assumed that edge
elements, constituent elements of texels on
object surface, are distributed in uniform
density and then formulated the relationship
between change of density of sum of edge
lengths in each local area in an image and
surface orientation and extracted surface
orientation.

Since these methods note edge elements,
they can be applied to some extent to tex-
tures in which texel structures cannot be
specified. However, in some images edge
elements cannot be extracted correctly in
some objective images, edges are extracted
in locations which differ from the real ones,
and/or valid edges may not exist. As stated,
a method in which texture is represented by
statistical features directly using gray
levels is effective for textures in which
clear boundary does not exist or ones with-
out clear structures and those for which
extracting edges is difficult. Methods
based on statistical quantity are applied to
image segmentation [8]. However, there is
no example to find object surface using
statistical features.

In this paper we consider a method in
which we represent textures by statistics
of gray levels and extract surface orienta-
tion using the statistical property. When a
plane of uniform statistical property on
object surface is projected on an image sur-
face, statistical congruence is broken be-
tween local regions and some distortion
arises. Description of the relationship be-
tween this distortion and surface orienta-
tion enables us to extract orientation of
the surface. Here we use for this statisti-
cal property a difference statistic in
which gray level difference is defined as a
probability density function depending on
distance and direction. We first assume
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Fig. 2. The surface normal vector.

that these statistics have the same density
function in every local region on object
surface and formulate the relation between
the distortion of the difference statistics
and surface orientation in local regions on
an image under the perspective projection.
Then we derive an algorithm for extracting
surface orientation based on this formula-
tion and examine its efficiency by experi-
ments.

Geometric Relation Between Surface
and Image Plane

2.

Coordinate system and perspective
projection

2.1.

Consider the 3-D coordinate system
0XYZ, as shown in Fig. 1, in which the ori-
gin 0 is the view point. Suppose that an
image plane is the plane owv perpendicular
to the Z axis (vision axis) whose origin is
(0, 0, fY. Let F be the distance to object
surface P and the orthogonal coordinate sys-
tem 0'UV with (0, 0, E) at the origin is
settled on the plane P so that the U axis
lies in the same plane (0XZ plane) as the u
axis. Thus, the normal vector w to the
plane P can be uniquely determined by angles
a and B, as illustrated in Fig. 2. Then we
have w = (sin « cos B, sin B cos a cos B)
and the equation of the plane P is given by

beX +dY —ac(Z—E)=0 (n

Here,
a=cosa, b=sina, c=cosf, d=sinf

The problem of extracting surface ori-
entation is equivalent to that of finding
these angles a, 8.

Letting f = 1 in the foregoing coordin-
ate system, the relation between object sur-
face P(U, ¥) and an image plane (u, v) under
the perspective projection is
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Fig. 3. The constraint conditions for
the distance and direction on the image
plane.

E(cu+ bdv) _ Eav
=ac—bcu—dv’ V= ac—bcu—dv 2)

U

" 2.2. Relation between length of line
segments and directions

When we project in perspective a line
segment onto an image plane, lengths and
directions change due to distortion caused
by projection. In an object surface P for a
line segment of length L and direction 8’
whose endpoint is <U, V> and a line segment
of length 7 and direction 6 whose endpoint
is (u, v) in the image plane after projec-
tion, the relation among L and Z, 6 and 8'
is

L=Eac/({ac— bcu— dv){ac—bc(u+lcosb)
—d{v+1Isin8)}
-[{(c— adv)cos 8 + d(b+ au)sind)’
+(bvcos+(a— bu)sind)’)*- 1)

(3

. - bvcos8+(a—bu)sind
g'=tan l[ (c—adv)cosﬁ+d(b+au)sin€] (4)

2.3. Constraint on distance and direc-
tion in an image plane

Given a pair of parallel line segments
of length L and direction 6’ with two end-
points (qﬂ, Kﬂ) and (Un, Vﬁ) on object sur-~

face P (endpoints on an image plane are (um,
vm) and (un, vn), respectively), as shown
in Fig. 3, generally we have Zm # Zn and
em # 8, in the image plane after perspective

projection. Then, from Eqs. (3) and (4),

there is the following relationship between
Zm and Zn and between 6, and 6 :
d n

({(c— advn)cos n+ d (b + aren)sinbm}?

F{0UmC08 On+(a~ b1en)singn}?]? In

[(ac~ bcrn— dym)

{ac~bc(ttn+ 1ncoS On)~ d(Un+ Insinbn)}]™

=[{(c—adva)cos ba+ d (b + aus)sinba)
+{bvacos On +(a— bun)sinb,}?) V- I
[(ac— berta— dva)
{ac = be(un+t tncos 6a)~ d(va+ Lisinda)}] !

(5)

bUnc0s On+{a—butn)sinba
(c— advn)cosOa+ d(b+ aun)sinGn

= buacosbnt(a~ bua)sings
(¢~ adya)cos O+ d(b+ aun)sinGs

(6)

If such a pair of line segments in an

image plane is tracted and 1
mage plan ex an - Zn, enf en

are obtained, we can find parameters a, 8

by combining Eqs. (5) and (6) for two pairs
of line segments. However, in this paper we
do not use structural information of texture
such as a line segment but aim to estimate
orientation directly from gray levels.
Therefore, noticing difference statistics
depending on distance and direction, we try
to estimate o and B from the property of
pairs of imaginary parallel line segments.

3. Extraction of Surface Orientation Using
Difference Statistics

3.1. Orientation extracting algorithm

Difference statistics is the probability
P(KiZ, 8) that the absolute value of gray
level difference from pixels which are apart
from some pixel by a certain displacement
(1, 8) is X. Since this depends on distance
and direction, we can represent texture fea-
tures statistically.

Assuming that the probability density
function of difference statistics is equal
in every local area in the object plane; for
probability density functions in some
gions m and 7 we have the relationship

Pu(K | L, On")=PalK | L, 6x7) 16))

when L =L and 8 ' =9 '. If we project
m n m n

it in perspective onto an image plane, there
arises some distortion in the difference
statistics due to the distortion by projec-
tion. The statistical congruence is broken
because of this and the relationship in Eq.
(7) does not hold. However, for 1, and 1,,
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Fig. 4. The algorithm extracting a sur-

face orientation.

and Bn and en satisfying Eqs. (5) and (6),

we have

Pm(l{l [m, 6m)=Pn(Kl In, 6)!) (8)
and density functions in the two regions in
the image plane coincide. Thus, conversely,
if we can find lm and Zn’ and Sm and en

satisfying Eq. (8) using the density distri-
butions of difference statistics Pn{K|/ln,
8n), and PAK | ln, 0x) found from two local
regions in the image plane, we can extract
surface orientation. However, since differ-
ence statistics may be of various forms de-
pending on textures, it is hard to find Z”f

Zn’ em and en satisfying Eqs. (5) and (6)

in an analytic manner. So, in this paper,
we introduce an evaluation function
]= l Pm(K' lm, em)_Pn(KI lll’ 0’!) l (9)

to estimate the surface orientations o, 8

in a searching manner to minimize this evalu-

ation function. That is, considering the
difference statistics obtained from an image
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as feature patterns representing texture
feature, we estimate the orientation by
taking matching among feature patterns be-
tween regions by changing a and B.

3.2. Orientation extracting algorithm

{a) Outline of algorithm

Figure 4 shows the algorithm for ex-
tracting orientation. First, for an input
image we settle the center of gravity of a
region, size of a region, and the maximum
value of distance by which difference sta-
tistics are computed. We find difference
statistics of two regions In(K| ln, 6a),

Pl K| ln, 62) with angular range 0= 6< 7.
Next, by giving a, 8, Zm' and em, we compute

corresponding Zn’ en from Egs. (5) and (6)

to compute J in Eq. (9). We estimate orien-
tations o¥, 8% to minimize J while updating
K, 1, 8.

In order to apply this algorithm to
real image data, we need correspondence of
regions and interpolation of difference sta-
tistics due to the property of discrete
image.

(b) Correspondence of local regions

Since an image consists of quantized
pixels, we cannot calculate difference sta—
tistics for every direction 8 when we mea-
sure difference statistics. We can obtain
sufficient data with equal gap only for
direction = 0°, 45°, 90°, and 135°. So, we
devise settling the centers of gravity of
regions as follows.

Since a line connecting centers of
gravity of two regions on object surface is
transformed also into a line after pexrspec~
tive projection, for direction after projec—
tion of the two lines that coincide in that
direction we have 8 = em = Bn in Eq. (5).

That is, if we settle centers of gravity of
twoc regions on lines of 6 = 0°, 45°, 90°,
135° and combine Egs. (5) and (8), we can
condense it as follows:

In-[{ac— bcttn— dum)
{ac— beun+ lncosbn)~ d(vn+ Insinbn)}] ™

=y [(ac — been— duvn)
{ac—bc(un+ lncos8a) — d(vat lsin@}]™ (10

Since it suffices to compute only in
fixed directions, we can compute J only by
updating the distance Zm' Here, we settle

it

the four regions as shown in Fig. 5 and
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Fig. 5. The corresponding directions
between local regions on an image.

estimate the orientations a and B with 8 =
0°, 90°.

(c) Interpolation of distribution of
difference statistics

The difference statistics P(KIZ,B) can
only be computed in a discrete manner with
respect to the distance 1 because an image
is discrete. Thus, even if we choose Zm in

Eq. (10) so as to be a computable value, it
does not always imply that Pn(K|Zn, 8) for

corresponding Zn becomes computable. So, we

interpolated the difference statistics dis-
tribution P(X|Z, 8) by a natural Spline
function [9] with respect to the distance Z.

(d) Search method

In order to find orientations « and B
to minimize J, it suffices to compute J for
every o and 8 in the range —90°<(a, £)<90°,
but the problem is its computational com—
plexity. So, in order to perform efficient
search, we use the following search algor-
ithm.

<Search algorithm>

(1) Choose 20 (o, B)s in the range
—30°<2,f£30° randomly and compute J.

(2) Let (a, B) , that minimizes J be
the central value and Jc be J at that time.
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Fig. 6. The periodic image pattern.

Fig. 7. The MRF texture image.

(3) Choose 20 (a, B) near the center
value in the range (a, B)min + 10° randomly

to compute J and let Jﬁin be the minimum one

of those J.

(4) If for J . and J we have J , <
min c min

J 5, then let o and B for 4 ., be the center
e min

value (a, B)min and then go back to (3).

If Jan2/c, then go back to (3) after
reducing the search range by 1°. Here, note
that we do not reduce the search range by
more than #2°,

(5) we terminate the search if (a,

B)min is not changed after the 10th itera-

tion and the value of (a, B) at that time be
the estimated value (a*, B*).

4. Application to Images

In oxrder to verify the effectiveness of
this method, we estimated orientations by
applying this method to images generated by
simulation and texture images which were
taken by a CCD camera.



Table 1.

Results of estimated orientations (1)

Periodic pattern

MRF texture

true values | °Stimated true values | ©Stimated
values values

a, B a*, B* a, a*, B*

10°, 10° 10°, 11° 10°, 10° 10°, 10°

200, 0° 200, 0° 20°, 0° 20°, 1°

0°, 20° -3°, 22°

Region centers: (100, 100), {100, 300),

{300, 100},

101 %101

Region size:

Py(Ki.00

Fig. 8. An example of the gray-level
difference statistics of the inclined
image (@ = B = 10°) of Fig. 6.

4.1. Simulation images
Figure 6 is a periodic texture image

using a sin function in which one cycle is
16 pixels and which has eight gray levels.
Figure 7 is a texture generated by using the
MRF model [8] with five gray levels. The
size of the images is 512 x 512 pixels.
transformed them with the origin at the

We
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{300, 300)

The evaluation function of the
10°) of Fig. 6.

Fig. 9.
inclined image (o = 8 =

lower left corner and estimated the orienta-—
tions a, B where region centers are (100,
100), (100, 300), (300, 300), the size of a
local area is 101 x 101 pixels, the maximum
length Zmax in which difference statistics

is computed. Figure 8 shows the difference
statistics found for a periodic pattern
when ¢ = B = 10° and Fig. 9 shows the evalu-
ation function and Table 1 is the estimation
results. We obtained the results that the
error is within #1° for periodic patterns
and it is #3° for MRF textures. These errors
are originated in that although textures
have 2-D features, they are defined as fea-
tures of representative points in a degener-
ated manner. Moreover, since we are re~
quired to interpolate data to deal with dis-
crete images, some error arises from its
estimation error. For MRF textures, it is
not necessarily guaranteed that difference
statistics have the same profile. 1In other



Table 2.

Results of estimated orientations (2)

Estimated Estimared

Region centers ;f}uejgi Region centers ;f?“;f
(100, 100), (150, 100) e 70 (100, 100), (300, 100) 10 11°
(100, 150), (150, 150) |~ (100, 300), (300, 300) o n
(100,100), (200,200) | o, | (100, 100), (350, 100) 10" 10°
(160, 200), (200, 200) | ~’ (100, 350), (350,350) | °
(100, 100), (250, 100) & 110
(100, 250), (250, 250) |’

True value: o=f=10% region size: 101Xx101
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Fig. 10. Real texture image (1).
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Fig. 11. Real texture image (2).

words, we can say that MRF textures are
those objects for which there is no guaran-
tee that the assumption in our method holds.

We also examined the influence when we
changed region centers. Table 2 shows the
result when we changed the region centers
for an image with a periodic pattern with
@ = B = 10° (the size of the image is 50).
In this case, error increases when we over-
lay regions. It is considered that this is

Real texture image (4).

because it was made unable to extract dis
tortion due to projection sufficiently si
the overlapped portion possesses a common
statistical property.

4.2. Real images

Next, we applied our method to textu
images taken by a CCD camera. The images
were taken with size of 240 x 240 pixels
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Table 3. Results of estimated orienta-
tations (3) '
True values Estimated values
a B a*, B*
Fig. 10 0.4, Wy o, 2w
Fig. 11 0.0, 48.0° o, 47
Fig. 12 SIR0° 24,27 - 167, 26°
Fig. 13 KOS M T 7oA

Region centers: (-69, -70), (41, -70),
(-69, 40), (41, 40)
Region size: 81 x 81

and 256 gray levels and the centexr of the
images are taken as the origin. Figures 10
through 13 are those images in which gray

levels are made to be 8 by an equal-probabil-

ity quantizing algorithm [6]. Table 3 in-

cludes the results when we estimated orienta-

tions where region centers are (-69, 70),
(41, ~70), (~69, 40) and (41, 40) and the
size of regions is 81 X 81 pixels. Regions
are estimated with error within #2° except
Fig. 13 in spite of worsened image due to
fade. For Fig. 13 for which the error is
large, if we estimate the orientation with
the same region centers and region size

101 x 101, we obtained the results a = 13°,
8 = 37°., It is considered that this is be~-
cause the statistical feature is fully re-
flected in difference statistics by enlarg-
ing the region size. In addition to the
problem concerning errors described in the
previous section, it may be considered that
since existing objects are input through a
TV camera noise at signal level, quantiza-
tion error and transformationm error are
overlaid.

In addition, in order to verify whether
the search algorithm for optimal solutions
is good or not for simulation images and
real ones, we computed the minimum value of
the evaluation function for all those images
used this time. Then all of them coincided
with optimal values found by this algorithm.

In this way, in spite of influence by
various kinds of noise, it was verified that
orientations in a texture image can be ex-
tracted sufficiently by this method using
difference statistics.

5. Conclusions

This paper proposed a method for ex—
tracting orientation of object surface using
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statistical property of a texture image. In
this method we use effectively gray levels
of an image which were not considered previ-
ously. This enables us to avoid various
problems in estimation and extraction of
texel and edge extraction and to extract
orientation of object surface using gray

levels directly from gray level images.

However, the method can be applied only
to a texture image whose difference statis—

“tics is uniform, and for other objects error

according to the uniformity arises. Also,
depending on the area in which statistics
is measured, in some cases texture feature
cannot be fully reflected. In the future,
we need to clarify the class of texture for
which difference statistics are uniform and
to consider how a large area should be set
according to texture.
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