an Article from

Journal of Robotics
and Mechatronics

Copyright ® 1989 By FUJI TECHNOLOGY PRESS LTD. All rights reserved.
7F Dai-ni Bunsei Bidg,, 11-7, Toranomon 1-chome, Minato-ku, Tokyo 105, Japan
Tel: 03-508-0051 Fax: 03-592-0648



Vol. 2-282 T.Tsuji et al.

Papers

Gravity Compensation for Manipulator Control by
Neural Networks with Partially
Preorganized Structure

Toshio Tsuji, Masataka Nishida, Toshiaki Takahashi
and Kaoji Ito

Faculty of Engineering Hiroshima University
Higashi-Hiroshima-shi, 724, Japan

The gravity torque of a manipulator can be compensated
if the equation of motion can be correctly introduced,
but in general industrial manipulators, there are many
cases when the parameter values such as the position of
center of mass are not clear, and these values largely
change by the exchange of hand portions and the grasp-
ing of substances. Furthermore, in addition to unclear
parameters, there are factors which oecur by structural
gravity compensation (spring and counter-balance) and
which in many cases are difficult to express with the
equation of motion. In this paper, compensation of the
gravity torque of the manipulator is studied by. the use
of neural networks. For this purpose, a model which
makes the structure known to be contained in mapping
as a unit with preorganized characteristics prepared in
parallel with hidden unit of error back propagation-type
neural network is proposed, by which the characteristics
of the link system which is the object for learning can be
imbedded into the network as preorganized knowledge
beforehand. Finally, the results of experiments done
with the use of industrial manipulators are given, and it
is made clear that the compensation of gravity torque of
manipulator and adaptive learning for end-point load
are possible by the use of this model.

1. Introduction

Generally, in a multi-articular manipulator, there exist
interferences among each joint which largely change inertia
characteristics by posture. Friction, gravity, Coriolis force
and centrifugal force also exist. Therefore, the multi-ar-
ticular manipulator becomes a system which has a high
degree of non-linearity, and it is difficult to make high-
velocity motion with high precision only using individual
joint feedback control.

On the other hand, human and arival deftly move their
limbs which are multi-articular mechanisms and can make
a speedy and skillful motion. The superior characteristics
of high velocity and pliability which the motion of a living
body has indicates that it’s motion control consists of not
only visual and proprioceptive feedback control but also by
feed-forward and program control based on an internal
model which reflects the dynamical characteristics of its
muscular and skeletal system.”? To generate such an inter-
nal model, a wide range of knowledge of controlled objects.
environment and motion mechanisms and also the ability to
assemble these factors depending on the existing situa-
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tions.conditions become necessary. It also becomes neces-
sary to be equipped with motion-control information as a
sub-system and to assemble this information 10 meet condi-
tions appropriately rather than to prepare an internal model
for each specific condition. Of course, it can be considered
that internal representation such as a motion scheme is
generated by learning for motions which occur frequently.

Recently, studies have been increasingly made to apply
neural networks of coping in the central nervous system of
the living body to motion control. Mr. Kawato proposed a
hierarchial model for motion learning based on hetero-
synapse plasticity and actualized an internal model of the
inverse system which calculates input torque to each joint
from a target joint angles by learning.” This neural network
consists of two layers. One is the unit layer which non-
linearly transforms the target trajectory; the other is the out-
put unit layer which makes a linear summation, making
good use of the point that the equation of motion of a link
system can be represented as the linear sum of nonlinear
terms. However, an industrial manipulator for general use
contains a considerable amount of complicated and unclear
nonlinear factors, and there are often cases in which general
equations of motion are not necessarily formed. Therefore,
problems arise on what kind of nonlinear transformation is
to be prepared.

Additionally, Mr. Kawato et al. showed™ that non-linear
transformation itself can be obtained by learning with the
use of error back propagation-type neural networks.”> The
errorback propagation-type neural network has several ad-
vantages. These include the capability of highly parallel
processing, powerful learning rules which can acquire ar-
bitrary nonlinear mappings and being strong against noise
and failure. This network can become an effective means
for constructing of internal models from motion control it’s
uniform structure. Buft, from it’s uniform structure, it con-
versely has the problematic points of taking time for learn-
ing and solutions coming down to a local minimum.

Therefore, in this paper, considerations are made to
imbed the characteristics of the link system which is the
learning object into a network as preorganized knowledge.
For this purpose, a model which makes the structure known
to be contained in mapping as a preorganized-layer and
which is prepared in parallel with the hidden layer of error-
back propagation-type neural networks is proposed, and by
the use of this model, a study is made to generate an internal
model for gravity compensation by learning about the inter-
nal model of motion control.

It is possible to actively compensate the gravity torque
of the manipulator in case the equation of motion can be
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correctly introduced,”® but generally, a method to compen-
sate the influence of gravity torque by structural balancing
with the use of a counter-balance, spring, etc. is used to
reduce the load by actuator. In such methods, correct com-
pensation is not possible, and, in addition, it causes un-
known factors to be built into the equation of motion and
the application of active compensation method becomes dif-
ficult. The model proposed in this paper can be used to
obtain the gravity torque which is represented by the equa-
tion of motion with a preorganized layer unit and unknown
factors are obtained by error-back propagation-type neural
network, and it becomes possible to correspond with a
manipulator having a complicated structure. In Chapter 2,
a mention is made of neural networks with partially preor-
ganized structure, and in Chapter 3, a construction method
for a gravity compensation internal model is shown. Final-
ly, in Chapter 4, the results of the experiment made with the
use of industrial manipulator are shown, and it is
demonstrated that the improvement of position-control ac-
curacy can be accomplished by the use of gravity compen-
sation internal model.

2. Neural Networks with Partially Preor-
ganized Structure

Figure 1 is the neural network proposed in this paper.
Considerations are made not only of the input unit which
receives input from outside and of the output unit which
transmits output to the outside but also of the hidden units
and preorganized units which function among them. Each
unit is a feedforward network which receives the input from
the previous layer and transmits the output to the following
layer, and there is no connection among units in the layers.

I; (input unit)
........ 1
2 Wy i o
j
vi=filx) ... o e )

Each unit receives activation value y; from previous
layer unit through weight coefficient w;;, and outputs ac-
tivation value in accordance to a differentiable output func-
tion f.. Here, for the input unit, the external input I; is the
input to unit x; . Then we have.

x; (input unit, output unit)
@i (x) (preorganized characteristic unit)
i () =
5t 2 (hidden unit)
I+e™
......................... 3

It is the characteristic of this model that is built the partially
preorganized layer into the error backpropagation-type
neural networks, That is, the structure contained in the map-
ping to be leamed is imbedded in networks with the use of
the output function @, of partially preorganized unit and the
mights to it.. By this method, the structure contained in
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mapping can be represented in the network as: input layer,
partially preorganized layer and output layer. The other
unknown factors can be represented in the network as: input
layer, hidden layer and output layer. It is expected that
learning velocity can be accelerated by structurally prepar-
ing preorganized knowledge.

The learning target of the model is to regulate the weight
coefficient w;; among units so that the target output can be
obtained for the input as in the case the of ordinary error
back propagation learning.”

oF dy;
fwy= = g2 di’ Vi e @
yi— & (output unit)
ZaE dyk ...... )
aykdx

Here, 1 shows learning rate, t; teacher signal given to
output unit, k unit of the layer next to i, respectively, and
the weights between input layer and partially preorganized
layer unit are to be fixed.

3. Construction of Gravity Compensation
Internal Model

Generally, the equation of motion of the multi-articular
manipulator can be expressed by:

M@ 8+ f80)+ g®+ B+ BO=1 . 6

Here, 6 represents the joint angle, M(8) inertia matrix,
(8, 8) Coriolis and centrifugal force, g(0) gravity torque,
B, viscous friction matrix, B.(6) nonlinear friction force 7t
joint torque respectively.

In this paper, a method to compensate gravity torque g(0)
is considered. As gravity torque becomes a factor to
generate steady-state error in position control the methods
to set up position feedback gain largely within the limit of
satisfying the stability of control system or to adopt PID
control are ordinarily used. But, there is a case in which
such methods are not applicable. For example, when com-
pliance control which needs the pliability of end-point is
made, the compliant motion becomes difficult if position

Target
Signals

Output
Layer

Preorganized
Layer

Input
Layer

Input Pattern

l Output Pattern

Hidden Layer
Fig. 1. Neural network with partilly preorganized structure
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Fig. 2. A Multi-articular manipulator: MOVE MASTER I

feedback gain becomes extremely large. Therefore, it is
necessary that the gravity torque is to be compensated by
some method.

The gravity torque of the manipulator can be computed
in accordance with the equation of motion (6) when the
parameters such as mass, position of the center of mass of
each link, etc. are known. But, in the general industrial
manipulator, even the mass of each link is often unclear, not
to mention the position of the center of mass. Also, each
parameter changes greatly at the exchange of the hand por-
tion and the grasping of substances, etc. Furthermore, in
many cases, such trials to mitigate the influences of gravity
by structural contrivances (for example, a spring installed in
a joint) have been made, and when such complicated
mechanisms exist, the application of the equation of motion
itself becomes impossible. Therefore, the gravity compen-
sation by learning with the use of neural networks shown in
the former chapter is studied separately from the introduc-
tion of gravity torque from the equation of motion.

The method of constitution which is going to be proposed
is as follows.

1) Manipulator is positioned to target joint angle 8, (n X 1
vector).
The control rule is PD control and

v=K(@;— 0+ B8 .......... e (D

is used.

Here, K is position feedback gain (n X n matrix), B is
velocity feedback gain (n X n matrix), and v (n X 1 vector)
is control voltage to the servo motor.

2) When the manipulator is influenced by gravity and fric-
tion as external forces, it stands a joint angle 0,, which
is different from 64 When the balancing condition is
considered, the link does not move upwards if

Ts+ g(ea)z ﬁ(k(ed e ea))

1§ satisfied.

Here, 1, (n X 1 vector) is downward stationary friction,
and fv( )(n X 1 vector) is the function to express the relation
between the joint torque and the input voltage of servo
motor.

3) To balance the driving force upwards with the sum of
stationary friction force acting downward and the gravity
force the position feedback gain K is gradually increased
in a stationary condition, and the control voltage is made
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Fig. 3. Learning history of gravity compensationmodels

higher. Also, the control voltage at the instant when the
joint begins to move is measured.

0= K0~ 0) - e ©)

4) The above procedures are repeated M times by changing
the target joint angle, and by making the control voltage
which deducted the voltage corresponding to stationary
friction V4 (i = 1,--,M) a teacher signal, and making 6,
(i = 1,--,M) an input signal, neural networks are learned
until the square sum of the error between the teacher
signal and the output of the network becomes small.

In partially preorganized layer trigonometric functions
contained in g(0) of the equation of motion are prepared for
an example, by which the parameters of the mass of the link
and the position of the center of mass, etc., can be learned
by a partially preorganized layer, and unknown factors such
as mechanism for gravity compensation can be learned by
the network through its hidden units. By learning on volt-
age levels, it is not necessary to be conscious of the function
f, contained in equation (8). In the next chapter, an ap-
praisal of this method is made by the actual use of the
manipulator.

4. Experiment of Manipulator Control

The above-mentioned procedures were applied to the in-
dustrial manipulator shown in Fig.2 (MOVE MASTER 11
manufactured by Mitsubishi Electric, mass appr.27kg), and
the generation of gravity compensation internal model was
studied. In the experiment, the joints at the wrist (85, 6,
and waist (B,) were fixed, and gravity compensation was
made on the joints at the shoulder (6,) and elbow (0,).

4-1. Learning History

First, target joint angle 8, were made into ten patterns in
the step width of 10° from 0° to 90° for each shoulder and
elbow joint, and learning was done with the use of a total
of 100 patterns of teacher signals. Figure 3 shows the
learning history. (a) in the figure is the learning history
which used a peural network with partially preorganized
structure proposed in this paper, (b) is that which used an
error-back propagation-type neural network,” and (c) is that
which used an adaptive filtering model.” As for (a), two
pieces of hidden layers, ten pieces of hidden units for each
layer and six pieces of partially preorganized units were
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prepared. The nonlinear functions used for partially preor-
ganized layer units were of six types; sin,, sin6,, sin(0,
+8,), cosB,, cosO,, cos(8, +6,). Two hidden layers and ten
pieces of hidden units for each layer for (b), and six kinds
of nonlinear functions for (c¢), the same as (a), were used.
In each case, the number of units of input layers and output
layers are two pieces each, and the learning rate was set at
0.01.

By the way, as wrist and waist joints are fixed in this
experiment, this manipulator can be considered to have 2-
link arms, shown in Fig.4. If the motion of manipulator is
perfectly described by the equation of motion for equation
(6), gravity torque g(8) becomes®;

gl(G) = (mllgl + mzll) gSin(Ql) + nglggsin(al + 92)

Gravity Compensation for Maniptilator Control Vol.2-285

0; is joint angle, m; mass of each link, }; the length of
each link, 1 distance from joint to the center of mass, g
gravity acceleration. As for affixed letter i, 1 shows the
shoulder joint and 2 shows the elbow joint. Therefore, non-
linear transformation necessary for the calculation of gravity
torque becomes the only sin function contained in equa-
tions (10) and (11). But, in the adaptive filtering model
(Fig.3(c)) which prepared these sin functions, the decrease
in errors is late and it is known that learning does not
proceed well. This is because influences other ‘than the
equations (10), (11) are contained in the gravity torque of
the manipulator. On the other hand, in errorback propaga-
tion-type neural network (Fig.3(b)), errors decrease but
leaming velocity is considerably late. In contrast to the
above, in the model (Fig.3(a)) proposed in this paper, fast
learning velocity is achieved while sustaining accuracy.

........................ 10 . . . .
(10) This is because nonlinear transformation which is known
beforehand at the time of the internal model generation is
2:0) = maghsin(®,+ 0;) .. ... ..... (11) prepared as a partially layer characteristics unit.
z 4-2. Number of Teacher Signals Patterns
In the experiment of the former chapter, learning was
A with the use of 100 pieces of teacher signals. In this chapter,
study is made of the influence which the number of patterns
of these teacher signals give to leaming.
In addition to the teacher signals in the former chapter in
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which target joint angle 8, was set in step widths of 10°,
learning was done with the use of six kinds of teacher
signals with step widths of 5°, 15°, 20°, 25° and 30° (the
number of patterns becomes 361, 49, 25, 16 and 16 pieces
each). Figure 5 shows mean square errors after 10,000
trials. Input (361 pieces) in the step width of 5° is given to
each. network and square errors with actually measured
values averaged by the number of datum input. Therefore,
in the case of teacher signals of 5° step widths, they coincide
with the mean values of square errors at the time of learning,
and input patterns which are not used at the time of learning
increase with the step width of the angles. From the figure,
it is known that errors increase with the increase of the step
width of the angles. But, in the teacher signals between 5°
and 20° step widths, the increase of a wide range of errors
is not seen, and the interpolation by neural networks is made
well. Therefore, it was made clear in the conditions of this
experiment that a gravity compensation internal model can
be generated by the small teacher signals of 20° step widths
totalling 20 pieces both for shoulder and elbow joints.

4-3. Position Control Accuracy

Next, for verifying the effectiveness of the internal model
(after learning of 10,000 trials) obtained by the result of
learning, control voltage was made

v=K(©,— 0)+ BO+ 1,(0)

and the position control was made. V,(0) is gravity com-
pensation voltage computed by the use of models. Here, K,
B are diagonal matrices, and K = diag.[11.191
11.191](v/rad), B = diag.[26.857 26.857](v/(rad/sec)). As
the purpose of this experiment is to verify the propriety of
the gravity compensation internal model, the position gain
K was set considerably low so that the steady-state error
remains at the time of position control.

Lo 432
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Fig. 7. Learning history for an end-point load (500 g)
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Results of the experiment are shown in Fig.6. (a) con-
cerns shoulder and elbow joints without gravity compensa-
tion and (b) concerns shoulder and elbow joints with gravity
compensation. Target angles are shown in the axis of
abscissa and errors (0, - 6,) between target angles and actual
angles are shown in the axis of ordinates, so their relations
can be known. From Fig.6(a), it is known that errors
decrease when the angle of shoulder joint approaches 90°
(the position when the arm is horizontal). This is an in-
fluence contrary to the ordinary gravity, and the effect of
the spring for gravity compensation which is built into the
joint of the manipulator. As this spring is set to meet the
posture which is most influenced by gravity (6,=90°, 8,=07),
the influence of gravity which is different from equation
(10), (11) appears in the position control errors of the
manipulator. In contrast to the above, when compensation
is made by the internal model (Fig.6(b)), errors come within
the range of almost £5° both for shoulder and elbow joints,
and position control accuracy is increased by the addition
of an internal model. Furthermore, the postures which were
not used as teacher signal are contained in these errors and
it is known that the neural network is making good gravity
compensation also on the postures besides the teacher sig-
nal. But, further improvement was not seen even when the
number of times of learning was increased. It is considered
that this is caused by the influence of the noise contained in
the teacher signal and the learning of method the neural
network. It will be necessary to find out the method of
obtaining a more robust teacher signal and develop the
method of learning of neural network in the future.

Next, by giving load to the end-point of the manipulator,
an experiment of generating a gravity compensation internal
model for it was made. Fig.7 shows the result of learning
with the use of teacher signals (10° step width, total 100
patterns) at the time of grasping the substance of 500g by
the end-point. In the figure, (a) concemns the case of re-
learning with the network at the time of no-load learned in
4-3. as initial value, and (b) concerns the case of learning
with only teacher signals with load. The dotted line shows
the square sum of the errors in output unit after learning
{10,000 trials) in the network at the time of no-load. From
the figure, it is known that the increase of errors by end-
point load is small when the network at the time of no-load
is re-learned, and errors decrease with the small number of
learning times, as low as 300 times. Figure 8 is the result
of position control in the above case. The errors of the
elbow joint increased a little compared with Fig.6, and is
considered to be caused by the change of friction force by
end-point load. It is necessary to study this further, but,
compared with the case without gravity compensation
(Fig.8(a)), position control accuracy is largely improved and
it is known that the gravity compensation internal model has
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been adaptably adjusted against load variation.

5. Conclusion

In this paper, for the purpose of constructing a motion
control internal model by learning, it was attempted to
imbed link system characteristics into neural network
beforehand. To this end, a model which builds a partially
preorganized layer into an errorback propagation-type
neural network is proposed, and a method of generating an
internal model which makes gravity compensation by learn-
ing with the use of this model is shown.

In general industrial robots, there exist complicated and
unclear nonlinear characteristics such as backlash accom-
panying to gear mechanisms and friction, and these non-
linear characteristics contain many functions whose forms
are known. The method shown in this paper can effectively
utilize such preorganized knowledge and can acquire the
relations of mappings whose characteristics are unknown by
learning too. In future, the modelization of internal models
related to dynamics and kinematics will be made, and the
construction of a whole motion program by a method of
exchanging these internal models in compliance to condi-
tions is considered.
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