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Abstract— This paper proposes a novel method of pattern
classification for user motions to create input signals for human-
machine interfaces from electromyograms (EMGs) based on
muscle synergy theory. The method can be adopted to represent
non-trained combined motions (e.g., wrist flexion during hand
grasping) using a recurrent neural network by combining syn-
ergy patterns of EMG signals preprocessed by the network. This
approach allows combined motions (i.e., unlearned motions) to
be classified through learning of individual motions (such as
hand grasping and wrist flexion) only, meaning that the number
of motions can be increased without increasing the number of
learning samples or the learning time needed to control devices
such as prosthetic hands.

The effectiveness of the proposed method was demonstrated
through motion classification tests and prosthetic hand control
experiments with six subjects (including a forearm amputee).
The results showed that 18 motions (12 combined and 6 single)
could be classified sufficiently with learning for just 6 single
motions (average rate: 89.2 ± 6.33%), and the amputee was
able to control a prosthetic hand using single and combined
motions at will.

I. INTRODUCTION

Electromyograms (EMGs) reflect human motion inten-
tions, and can be used to control a range of devices such as
EMG-based prosthetic hands. Various related methods have
been discussed in previous studies [1]–[4].

To enable estimation of human intentions and motions
from EMG signals, it is necessary to model the relation-
ships between each motion and samples of individual EMG
signals. However, in the case of multiple motion estimation
based on the idea of EMG pattern classification, large
amounts of sample data and time are necessary to allow
the learning of discriminators (such as neural networks) in
accordance with the higher number of motions involved.
The realization of EMG-based control for highly complex
robot devices such as prosthetic hands with multiple de-
grees of freedom (DOFs) is exceptionally difficult due to
the impracticality of measuring the large number of EMG
signals corresponding to every possible motion generated by
a human hand.

Human movement generation (i.e., the control of multiple
joints and muscles with many DOFs) is quite a complex
problem because the number of DOFs of the human body at
the muscle level is in the order of 103 [5]. It is therefore con-
sidered that the human movement control system is realized
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based on a combination of multiple muscle synergies. Muscle
synergy is defined by Sherrington as cooperative muscle
activity [6], and some researchers have tried to extract muscle
synergies from EMG signals. As an example, Bizzi et al. tried
to extract multiple muscle synergies from time-series EMGs
of a frog’s leg, and reported that the measured EMGs could
be reconstructed using a combination of the muscle synergies
extracted [7]. However, the synergies identified focused only
on measured EMGs, so cannot be used to estimate unknown
motions.

This paper proposes a novel pattern classification method
that can be used to estimate unknown motion combinations
by putting together the muscle synergies of a individual
motion (e.g., a simple movement of the human hand such
as wrist flexion or extension). This approach considers that
each single-motion EMG signal reflects one muscle synergy.
The muscle synergy is extracted from the individual motion’s
EMG pattern using a recurrent neural network, and unknown
movements consisting of individual motions such as wrist ex-
tension with hand grasping (referred to as combined motions)
are then estimated based on muscle synergy combinations.
The combined motions can be estimated using only the
single-motion EMG signals, and the number of motions in
the problem of EMG pattern classification can be increased
without a corresponding increase in the amount of sample
data and learning time required.

This paper is organized as follows: in Sections II and III,
the details of the muscle synergy theory and the proposed
method are described. The validity of the proposed system is
examined in Section IV, the conclusion is outlined in Section
V, and future study plans are discussed to wrap up the paper.

II. MODELING OF COMBINED MOTIONS BASED ON
MUSCLE SYNERGY THEORY

Muscle synergies, which are coherent activations of groups
of muscles in space or time, have been proposed as building
blocks to simplify the construction of motor behavior [7].
The human body has an enormous number of DOFs, and it
is exceptionally difficult to control the muscle units involved
in achieving related movement; accordingly, the human brain
lightens its huge calculation load by managing movements
through muscle synergy combinations. If these muscle syner-
gies can be extracted from EMG signals in accordance with
human activity, it may be possible to ascertain the control
mechanisms of complex movements with multiple DOFs.

Bizzi et al. [7] assumed that time series EMG patterns gen-
erated from individual movements consist of specific muscle
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Fig. 1. Relationships between the muscle synergy theory of Bizzi et al. and the proposed method

synergy patterns, and defined EMG patterns as follows:

uc(t) =

J∑
j=1

ac,jsj(t− dc,j) , (1)

where uc(t) ∈ �L is an EMG pattern generated by an
individual movement at a given time t, sj(t) ∈ �L (j =
1, 2, . . . , J) is the muscle synergy pattern, ac,j is the weight
coefficient, dc,j is the delay, L is the number of channels
and c = 1, 2, . . . , C is the motion number. Here, any uc(t)
can be expressed using muscle synergy patterns by searching
for the sj(t), ac,j and dc,j with the minimum reconstruction
error as

E2 =

C∑
c=1

Tc∑
t=1

‖uc(t)−
J∑

j=1

ac,jsj(t− dc,j)‖2 . (2)

It should be noted that the parameters sj(t), ac,j and dc,j
are necessary to decide the new sample data uc(t) using
Bizzi’s method. Accordingly, it is not possible to estimate
the uc̃(t)(�∈ {uc(t)|c = 1, 2, . . . , C}) of unknown motions
using the calculated muscle synergy pattern sj(t) (Fig. 1(a)).

In this paper, it is considered that unknown combined
motions are expressed by the linear sum function of C
basis vectors (which convert the muscle synergy pattern
corresponding to C single motions into an orthonormal basis
vector of C dimensions in vector space). First, the time series
EMG [u(t),u(t−1), . . . ,u(t−n)]∈ �L×(n+1) is converted
as follows:

s̃(t) = F (u(t),u(t− 1), · · · ,u(t− n)) . (3)

Here, s̃(t) = [s̃1(t), · · · , s̃C(t)]T ∈ �C ,
∑C

j=1 s̃j(t) =
1, and the function F (·) converts the jth single motion
[uj(t),uj(t−1), · · · ,uj(t−n)] ∈ �L×(n+1) into unit vector
s̃j(t) = F (uj(t),uj(t − 1), · · · ,uj(t − n)) ∈ �C (where
the jth element is equal to 1). Based on the above method,
the combined motions’ EMG s̃(t) can be expressed using
s̃j(t) as follows:

s̃(t) =
C∑

j=1

âj s̃j(t) , (4)
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Fig. 2. Overview of the proposed pattern classification method for
combined motions with a prosthetic arm

where âj is the combination ratio of each single motion.
Since s̃j(t) is an orthonormal system, s̃(t) is expressed as

s̃(t) = [â1, ..., âj , ..., âC ]
T . (5)

Thus, if the function F (·) is found from the time series
EMG of the single motions, the combination ratio âj of each
single motion can be calculated by converting the combined
motions’ EMG into s̃(t) (Fig. 1(b)). This paper outlines
the proposal of a construction method for the function F (·)
using a recurrent neural network, and the following section
describes efforts to control a prosthetic hand based on muscle
synergy theory.

III. COMBINED MOTION CLASSIFICATION FOR
PROSTHETIC HAND CONTROL

The concept of the proposed combined motion classifica-
tion method for controlling a prosthetic hand is shown in
Fig. 2. The details of each part are outlined in the following
subsections.

A. EMG measurement and feature extraction

First, EMG signals measured from L pairs of electrodes
are digitized using an A/D converter (sampling frequency:
fs [Hz]), and are rectified and filtered out through a second-
order Butterworth filter (cut-off frequency: fc [Hz]) for
each channel. These sampled time-series EMG signals are
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defined as EMGl(t) (l = 1, · · · , L). The force information
FEMG(t) of the user is then computed as follows:

FEMG(t) =
1

L

L∑
l=1

∣∣EMGl(t)− EMGst
l

∣∣
EMGmax

l − EMGst
l

(6)

where EMGl
st is the mean value of EMGl(t) in a state of

muscle relaxation and EMGmax
l is the maximum voluntary

contraction. When FEMG(t) is greater than the threshold Fth,
motion is judged to have occurred.
EMGl(t) is then normalized to make the sum of L

channels equal to 1 using the following equation:

ul(t) =

∣∣EMGl(t)− EMGl
st
∣∣

EMGmax
l − EMGl

st

×
L∑
l=1

EMGmax
l − EMGl

st

∣∣EMGl(t)− EMGl
st
∣∣ (7)

u(t) = [u1(t), u2(t), · · · , uL(t)]
T ∈ �L is utilized to

estimate user motion.

B. Muscle synergy extraction

The recurrent log-linearized Gaussian mixture network (R-
LLGMN) proposed by Tsuji et al. [8] is used for muscle
synergy extraction, and its network structure is shown in
Fig. 3. It is composed of a Gaussian mixture model (GMM)
and a hidden Markov model (HMM), and copes with the
time-varying characteristics of input signals. Learning the
relationships between the user’s EMG patterns and each
single motion using the R-LLGMN makes it possible to
estimate the function F (·) from the user’s EMGs for muscle
synergy extraction.

First, the input vector u(t)(t = 1, 2, · · · , Td; Td is the time
length of the input vector) is processed through non-linear
computation using the following equation:

U(t) = [1,u(t)T, u1(t)
2
, u1(t)u2(t), · · · ,

u1(t)uL(t), u2(t)
2, u2(t)u3(t),

· · · , u2(t)uL(t), · · · , uL(t)
2
]
T
. (8)

U(t) is a newly input vector at a given time t. The first layer
consist of of H = 1 + L(L + 3)/2 units corresponding to

the dimension of U(t) and the identity function is used for
activation of each unit.

Unit {c, k, k′,m} (c = 1, · · · , C; k, k′ = 1, · · · ,Kc;
m = 1, · · · ,Mc,k) in the second layer receives the output
of the first layer (1)Oh(t) corresponding to Uh(t) (h =
1, 2, · · · , H) weighted by the coefficient wc

k′,k,m,h. The
relationship between the input and the output in the fourth
layer is defined as

(2)Ick′,k,m(t) =

H∑
h=1

(1)Oh(t)w
c
k′,k,m,h , (9)

(2)Oc
k′,k,m(t) = exp

(
(2)Ick′,k,m(t)

)
, (10)

where Kc is the number of states, and Mc,k is the number
of components of the Gaussian mixture distribution in class
c and state k.

The input into a unit {c, k, k′} in the third layer integrates
the output of units {c, k, k′,m} (m = 1, · · · ,Mc,k) in the
second layer, and the output of the fourth layer is also fed
back to the third layer. These are expressed as follows:

(3)Ick′,k(t) =

Mc,k∑
m=1

(2)Oc
k′,k,m(t) , (11)

(3)Oc
k′,k(t) =

(4)Oc
k′(t− 1)(3)Ick′,k(t) , (12)

where (4)Oc
k′ (0) = 1.0 is for the initial state.

The relationship in the fourth layer is defined as

(4)Ick(t) =

Kc∑
k′=1

(3)Oc
k′,k(t) (13)

(4)Oc
k(t) =

(4)Ick(t)∑C
c′=1

∑Kc′
k′=1

(4)Ic
′

k′ (t)
. (14)

Finally, unit c in the fifth layer integrates the outputs of
Kc units {c, k} (k = 1, . . . ,Kc) in the fourth layer. The
relationship in the fifth layer is defined as

(5)Ic(t) =

Kc∑
k=1

(4)Oc
k(t) (15)

(5)Oc(t) = (5)Ic(t) . (16)

In R-LLGMN, the calculations in the third and fourth
layers are associated with the feedback connections. A time-
varying relation of each pattern can therefore be used as input
data, and it is possible to discriminate for multivariate time
series signals using the NN [8].

The R-LLGMN can model the a posteriori probability of
each single motion through learning (which means setting of
the weight coefficient between the first and second layers).
The network outputs the a posteriori probability (5)Oc(t)
of each class from the input vector U(t) at given time t
through calculation for each layer. The output (5)Oc(t) is
defined by the element of muscle synergy corresponding to
single motion c as s̃c(t).
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For R-LLGMN learning, only the normalized EMG of
each single motion u(t) is used, and the number of learning
data for each class is M . Accordingly, the total num-
ber of learning data is (N = M × C). Here, a set
of vector streams u(t)(n)(t = 1, 2, · · · , Tl) is given for
training of the R-LLGMN with teacher vector Y (n) =

[Y
(n)
1 , · · · , Y (n)

c , · · · , Y (n)
C ]T (n = 1, . . . , N). Here, if the

vector stream u(t)(n) is set for class c, then Y
(n)
c = 1 and

Y
(n)
ĉ = 0 (ĉ �= c) for all the other classes in this subset. In

this paper, the energy function for the network is defined as

J =

N∑
n=1

Jn = −
N∑

n=1

C∑
c=1

Y n
c log (5)Oc(T )(n) , (17)

where (5)Oc(T )(n) is the a posteriori probability at a given
time T for time series patterns. The learning process is to
minimize J , that is, to maximize the likelihood. Because of
the recurrent connection in R-LLGMN, the backpropagation-
through-time (BPTT) algorithm is used.

When the time series EMG vector u(t) of a single motion
is newly input to the learned R-LLGMN, the network outputs
the unit vector. Thus, the conversion of Eq. 3 can be realized
using the R-LLGMN, and the muscle synergy pattern of each
single motion can be extracted from the EMG pattern as an
orthonormal basis vector.

C. Prosthetic hand control

The prosthetic hand developed by Fukuda et al [4] is
controlled based on human hand impedance characteristics
[9] and muscle synergy s̃(t) extracted from EMG patterns.
This paper first defines the equation of motion for a manip-
ulator with Q links defined as follows based on human hand
impedance characteristics:

M(θ)θ̈ +H(θ̇, θ) +G(θ) = τ , (18)

τ = K(α)(θ∗ − θ)−B(α)θ̇ . (19)

Here, θ = [θ1, θ2, . . . , θQ]
T ∈ �Q is the joint angle of

the manipulator, M(θ) ∈ �Q×Q is the inertial matrix,
H(θ̇,θ)∈ �Q represents terms of centrifugal and Coriolis
force, respectively, G(θ)∈ �Q is the term of gravity, and
τ∈ �Q is the joint torque vector. Also, K(α), B(α) ∈
�Q×Q are diagonal matrices with viscoelastic elements
Kq(α), Bq(α) (q = 1, 2, · · · , Q), and are defined as

Kq(α) = kq,1α
kq,2 + kq,3 , (20)

Bq(α) = bq,1α
bq,2 + bq,3 . (21)

Here, q is the joint number in the manipulator, and α
(0 ≤ α ≤ 1) describes the muscle activation level defined as
follows using force information FEMG:

α =
FEMG∑C

j=1 F
j
EMGâj

. (22)

Here, F j
EMG identifies the value of FEMG with the maxi-

mum voluntary muscle contraction. θ∗ = [θ∗1 , θ∗2 , · · · , θ∗Q]T

is the equilibrium joint vector, and is defined using the
combination ratio âj of a single motion corresponding to
joint q as

θ∗q =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

θmax
q (âj ≥ amax

th )

âj(θ
max
q − θq) (amin

th ≤ âj < amax
th ) ,

θq (âj < amin
th )

(23)

where amax
th is the threshold of the combination ratio cor-

responding to the maximum joint angle, amin
th is the dead-

zone threshold, θmax
q describes the equilibrium angle of the

manipulator joint, and θq is the individual joint angle of the
manipulator. θq changes with the combination ratio âj as
shown in Eq. 23, and torque τq is then generated from the
user’s EMG pattern for control of the manipulator.

IV. EXPERIMENTS

To verify the validity of the proposed method, classifi-
cation experiments for user motion and control experiments
with a prosthetic hand were conducted using muscle synergy
theory. In these experiments, the sampling frequency of EMG
measurement was fs = 1 [kHz], and the cut-off frequency
of the low-pass filter was fc = 1 [Hz].

A. Classification experiments for combined motions

1) Methods: Pattern classification experiments on single
and combined motions using muscle synergy calculated
from user’s EMG signals were conducted to confirm the
conversion ability of the function F (·) using the R-LLGMN.
The user’s motions were determined using the basis pat-
tern ŝ(g) = [ŝ

(g)
1 , · · · , ŝ(g)C ]T(g = 1, · · · , G), where G is

the number of all motions including single and combined
motions. Here, ŝ(g) is defined as a unit vector in which the
corresponding element is 1 for the case of single motions,
and is also a vector in which the corresponding elements
are 1

Ns
for the case of combined motions consisting of Ns

single motions. The distance 1
Ns

between s̃(t) and ŝ(g) is
then calculated using Eq. 24, and the motion g with minimum
distance dg(t) is determined as the user’s intended motion:

dg(t) =

√√√√
C∑

j=1

(s̃j(t)− ŝ
(g)
j )2 (g = 1, · · · , G) . (24)

In the experiments, six pairs of electrodes were attached
to the user’s arm (ch. 1: extensor carpi ulnaris; ch. 2:
brachioradialis; ch. 3: extensor carpi radialis; ch. 4: flexor
carpi radialis; ch. 5: brachialis; and ch. 6: biceps brachii) for
EMG signal measurement. The number of learning data M
was 1, the threshold of the force information Fth was 0.18,
and Tl and Td were 20 [ms] and 6 [ms], respectively.

The subjects were five healthy males (A–D: 24 years
old; E: 22 years old). The total number of motions in the
discrimination was G = 18, and six single motions (C = 6;
1: hand opening; 2: hand grasping; 3: wrist extension; 4:
wrist flexion; 5: pronation; and 6: supination) and twelve
combined motions (Ns = 2; 7: opening and pronation; 8:
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Fig. 4. Example of discrimination results with Subject A

grasping and pronation; 9: extension and pronation; 10: flex-
ion and pronation; 11: opening and supination; 12: grasping
and supination; 13: extension and supination; 14: flexion
and supination; 15: opening and extension; 16: grasping and
extension; 17: opening and flexion; and 18: grasping and
flexion) were focused on for the discrimination. It should
be noted that some combinations are impossible, such as
simultaneous hand opening and grasping, and wrist flexion
and extension.

2) Results: An example of the experimental results from
Subject A is shown in Fig. 4. The figure plots EMG signals,
force information, combination ratios and discrimination
results. The non-shaded area indicates the time during which
FEMG(t) was greater than Fth. The figure shows that single
motions (as learned by the R-LLGMN) can be classified
accurately. However, it is confirmed that some misclassifi-
cation of combined motions (i.e., unknown ones) occurred.
This result is mainly due to two factors: the R-LLGMN
learned only the EMGs of single motions, and one of the
EMG patterns of single motions was generated first while
combined motions were being performed.

Figure 5 compares the results of the proposed method and
the conventional method with learning and discrimination for
all motions (18, including combined motions). It shows the
average discrimination rates with all subjects. Here, Tl and
Td are defined as 1, and the other conditions are the same
as those of the proposed method.

Although only six motions were learned in the proposed
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Fig. 5. Comparison of discrimination rates using the proposed and
conventional methods

TABLE I
Impedance parameters used in the experiments

Joint, q

Extension (3) / Flexion (4)

Opening (1) / Grasping (2)1

2

kq, 1

[Nm / rad]

0.90

32.8

0.6

0.6

0.3

3.2

Motion ( j ) kq, 2
kq, 3

[Nm / rad]

approach, the figure shows that both the proposed and
conventional methods have the same classification ability
for all motions. The discrimination ratios of all motions
for each method were 85.5 ± 4.14% (conventional) and
89.2± 6.33% (proposed). These results lead us to conclude
that the proposed method can be used to classify unknown
combined motions by implementing learning for the EMGs
of single motions.

B. An example of prosthetic hand manipulation

Experiments involving prosthetic hand control using the
proposed classification method were conducted. The subject
was a forearm amputee (49 years old), and EMG signals
were measured from four pairs of electrodes attached to the
forearm (ch. 1: extensor carpi ulnaris; ch. 2: brachioradi-
alis; ch. 3: extensor carpi radialis; and ch. 4: flexor carpi
radialis). The total number of discriminated motions G was
eight, consisting of four single motions (C = 4; 1: hand
opening; 2: hand grasping; 3: wrist extension; and 4: wrist
flexion) and four combined motions (Ns = 2; 5: opening
and extension; 6: grasping and extension; 7: opening and
flexion; and 8: grasping and flexion). The other conditions
were as outlined in IV-A. In the experiments, two DOFs of
the prosthetic hand (opening/grasping and extension/flexion)
were controlled using the motions discriminated under the
proposed method (Q = 2). Kq(α) is defined as shown in
Table I, and Bq(α) = 0.

Figure 6 shows the operation of the prosthetic hand in
each time period, and Fig. 7 shows an example of the
experimental results with EMG signals, force information,
muscle activation levels, combination ratios and the joint
angle of the prosthetic hand. The non-shaded area indicates
the time during which FEMG(t) was greater than Fth. The
figure shows that the user could voluntarily control single
and combined motions at will. The discrimination rate in
this experiment was 98.8%. Thus, the results show that
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(a) Opening (b) Grasping

(c) Extension (d) Flexion

(e) Opening and extension (f) Grasping and extension

(g) Opening and flexion (h) Grasping and flexion

Fig. 6. An amputee controlling the manipulator

the proposed method can be used to control a prosthetic
hand with unknown combined motions estimated from single
motions.

V. CONCLUSIONS

This paper proposes a method by which unknown com-
bined motions can be classified at the same time based on
muscle synergy theory and used as part of a base control
method for a prosthetic hand. In the experiments performed,
muscle synergy patterns were extracted from five subjects,
and twelve unknown combined motions were discriminated
through learning for six single motions. The discrimination
rates of each motion were 95.2 ± 3.91% (single motions),
84.0 ± 8.6% (combined motions) and 89.2 ± 6.33% (all
motions), thereby clarifying that the proposed method can be
used to classify unknown motions. We also confirmed that
the amputee could voluntarily control combined motions for
prosthetic hand operation based on this technique.

The classification accuracy of the proposed method is
highly influenced by individual parameters such as Fth

and Tl. In future work, we plan to investigate a way of
determining each parameter in the proposed method. We also
aim to develop a system to enable training for EMG pattern
generation, as EMG signals change according to the subject’s
condition, posture and task performance.
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Fig. 7. Example of experimental results for manipulator control
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