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Abstract. Caenorhabditis elegans changes its NaCl-associated behavior
from attraction to avoidance following exposure to NaCl in the absence
of food (salt chemotaxis learning). To understand the changes induced by
chemotaxis learning at the neuronal network level, we modeled a neu-
ronal network of chemotaxis and estimated the changes that occurred
in the nervous system by comparing the neuronal connection weights
prior to and after chemotaxis learning. Our results revealed that neuro-
transmission involving ASE and AIA neurons differed prior to and after
chemotaxis learning. This partially corresponded to the experimental
findings of previous studies. In addition, our computational inference
results suggest the involvement of novel synapse connections in chemo-
taxis learning. Our approach to estimate changes of neurotransmission
corresponding to learning may help in planning experiments in order of
importance.
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1 Introduction

The nematode C. elegans is one of the major model organisms for the nervous
system. Its neuronal networks consisting of 302 neurons [1] enable it to respond
adequately to various stimuli such as attractant/repellent chemicals, variations
in temperature, and mechanical stimulation [2]. C. elegans typically approaches
NaCl, as a soluble chemoattractant. Behavioral plasticity is observed in this
organism after it experiences a particular combination of multiple stimuli [3]; for
example, C. elegans modifies its movement response to NaCl from attraction to
avoidance following exposure to NaCl in the absence of food for several hours (see
Fig. 1). Since the anatomical structure of the nervous system in C. elegans is well-
characterized [1] and does not change at the adult stage, by using this organism
it may be possible to understand the specific changes in neuronal states (the
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Fig. 1. Salt chemotaxis learning in C. elegans

response-characteristic of a neuron and the synaptic transmission efficiency at
a certain time) corresponding to behavioral changes. Because of this advantage,
in recent years many studies on the mechanisms of learning and memory have
been carried out using C. elegans [3]–[6].

The behavioral plasticity in response to NaCl, termed ’salt chemotaxis learn-
ing’, can be explained, at the neuronal network level, as the changes over time of
both the response-characteristics of each neuron and the degree of synapse trans-
mission (neurotransmission). In the previous studies, the involvement of some
neurons in learning was determined from molecular experiments. However, even
using physiologic and/or advanced imaging techniques [7]–[8], it is not possible
to measure signal transduction in whole synapse connections and gap junctions
in C. elegans at the same time. For this reason, whether the change of neuronal
states corresponding to the behavioral changes extends to the whole nervous
system or only to a limited part of the nervous system is not known.

Therefore, to understand the behavioral changes induced by learning at the
neuronal network level, we here propose a novel approach in which the neuronal
network is modeled based on the actual neuronal connections, and the neuronal
changes corresponding to learning are estimated. The purpose of our computa-
tional inference study is to provide novel information that cannot be obtained
using conventional experimental techniques. These results will help us to plan
experiments in order of importance. This paper covers estimation of the neuronal
changes relating particularly to salt chemotaxis learning.

2 Computational Inference of Neuronal States Using a
Neuronal Network Model

2.1 Stimulation Response in C. elegans and Its Neuronal Structure

C. elegans has a simple cylindrical body approximately 1 mm in length and the
body is composed of 959 cells. Neuronal networks consisting of 302 neurons in-
clude approximately 5000 chemical synapse connections, approximately 600 gap
junctions and approximately 2000 connections between neurons and muscles [1].
The neuronal network processes information from various kinds of stimuli inside
and outside the body, and produces differing types of movement appropriate for
each stimulus; for example, avoiding obstacles or repellent chemicals. As men-
tioned previously, in addition to transient responses, C. elegans has the capacity
to learn some amount of environmental information [3]. Although C. elegans usu-
ally prefers NaCl and approaches the high-concentration area of a NaCl gradient,
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Fig. 2. A model of the chemotactic neuronal network in C. elegans

after having experienced starvation and NaCl at the same time, the response
changes to avoidance of NaCl. Neurons of C. elegans are classified into three
main groups by function: sensory neurons, interneurons and motor neurons. The
sensory neurons detect external stimuli first, and then the interneurons process
information from the stimuli. Finally, the motor neurons control the muscles on
the basis of signals from the interneurons. These neuronal networks enable C.
elegans to respond adequately to various stimuli.

2.2 A Model of the Chemotactic Neuronal Network in C. elegans

Estimation of the neurotransmission prior to and after chemotaxis learning is
meaningful towards an understanding of the changes in the nervous system in-
duced by learning. Therefore, we here propose a neuronal network model of C.
elegans, and use this model to estimate the changes in neurotransmission re-
lating particularly to salt chemotaxis learning. Figure 2 shows a model of the
neuronal network in relation to chemotaxis, in which the neuronal connections
were connected based on the anatomical structure [1] of C. elegans. There are
66 connections in this model.

’ASE’ represents a pair of sensory neurons as one neuron, in which the sen-
sory neurons ASEL and ASER, which sense soluble chemicals such as NaCl,
were simplified. We expressed the other sensory neurons relating to chemotaxis
in our model, in which AWA(L/R) and AWC(L/R) sense volatile chemoattrac-
tants and AWB(L/R) senses volatile repellents. Neurons that have the same
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function were presented as one neuron in the same way as ASE neuron. On the
other hand, the details of the neurons that sense starvation are not known. We
here focused on sensory neurons, ADF(L/R), ASG(L/R) and ASI(L/R), which
relate to the formation of dauer larvae under conditions without food at the lar-
val stage [9] and/or sense stress at the adult stage [10]. We represented these as a
sensory neuron ’F’ that sense starvation. Subsequently, 10 types of interneurons,
AIA(L/R), AIB(L/R), AIY(L/R), AIZ(L/R), RIA(L/R), RIB(L/R), RIM(L/R),
AVA(L/R), AVE(L/R) and AVB(L/R), connecting with the 5 sensory neurons
were included in this model. Finally, we modeled motor neurons. For various
types of movement such as turn and locomotion in C. elegans, muscles are con-
trolled by motor neurons existing in the whole body. In fact, turns in response to
stimuli are considered to be dependent on neuromuscular controls in the head.
Therefore, we considered only the outputs of 14 motor neurons for head control,
and these neurons were simplified as only 2 neurons, i.e., a dorsal (D) motor
neuron and a ventral (V) motor neuron, where the former controls the dorsal
side of the head and the latter controls the ventral side.

In this model, multiple connections existing between a pair of neurons were
simplified as a single connection and the efficiency (information content) of neu-
rotransmission of each connection was expressed by the connection weight, wi

(i = 1, 2, · · · , 66). Signal transductions on chemical synapse connections are one
way transductions, while gap junctions are interactive. A positive value of wi

indicates an excitatory signal and a negative value signifies an inhibitory signal.

2.3 Description of the Characteristics of Neurons

Output of the sensory neurons Oj (j ∈{ASE, AWC, AWA, AWB, F} was
expressed by the following nonlinear equation based on the general neuronal
characteristics:

Oj = cj/[1 + exp{−aj(Ij − bj)}] (1)

where aj is an inclination with output function, bj is the value of the stimula-
tion input at which the output of the neuron takes a central value, and cj is a
gain (0 < cj ≤ 1) to the output and is equivalent to the stimulation reception
sensitivity. The input Ij to each neuron is the sum of a value that multiplies
the connection weight wi by the stimulation input Sj and/or the output of the
connected neuron. Stimulation inputs Sj to sensory neurons are the step-less
inputs of the range of [0, 1], which quantifies the strength of the stimulation.
Therefore, Oj outputs the continuation value of [0, 1] which is normalized by
the maximum output from the actual neuron. The output characteristics Ok

(k ∈ {AIA, AIB, AIY, AIZ, RIA, RIB, RIM, AVA, AVE, AVB, D, V}) of interneu-
rons and motor neurons were also represented by Eq. (1).

2.4 Settings for Output of Motor Neurons Based on Behavior

In the proposed model of the neuronal network, if the output of motor neurons
D and V corresponding to stimulation input sensed by sensory neurons is known,
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Table 1. Settings for output of motor neurons based on behavior

Stimulation Behavior Motor neuron State Output

Non-stimuli Forward D Inhibition TD = 0
(Nomal) V Inhibition TV = 0

Attractants Forward D Excitation TD = 1
(Attraction) V Excitation TV = 1

Repellents Dorsal-side turn D Excitation TD = 1
(Case 1) (Avoidance) V Inhibition TV = 0

Repellents Ventral-side turn D Inhibition TD = 0
(Case 2) (Avoidance) V Excitation TV = 1

we can estimate the neurotransmission for each synapse connection and each gap
junction on the basis of the input-output relationship. However, it is impossible
to measure the output of each motor neuron even using advanced techniques.

Therefore, we provided the output of the motor neurons from the correspond-
ing behavioral responses, such as forward movement or turn. Here we assumed
that C. elegans moves forward when the internal states of 2 motor neurons bal-
ance, and it turns when the states do not balance. Turns are classified into 2
cases, i.e., the dorsal-side turn (Case 1) and ventral-side turn (Case 2). Mo-
tor neuron D is in an excited state when the dorsal-side muscles contract and
C. elegans turns to its dorsal side, and motor neuron V is in an excited state
when the ventral-side muscles contract and the worm turns to its ventral side.
Based on this, the settings for outputs of the motor neurons corresponding to
each stimulation input were provided as shown in Table 1. Outputs for forward
movement (attraction) were given as TD = TV = 1. In the same way, for turn
(avoidance), the desired outputs were given as TD = 1 and TV = 0 or TD = 0
and TV = 1. Therefore, in the case of normal chemotaxis (prior to learning),
response to stimulation sensed by the ASE, AWC or AWA neurons is forward
movement, and the desired outputs of the motor neurons were TD = TV = 1.
Also, the response to stimulation sensed by the AWB neuron is turn, and the
desired outputs of the motor neurons were TD = 1 and TV = 0 or TD = 0 and
TV = 1.

2.5 Optimization of the Neuronal Network Model by a Real-Coded
Genetic Algorithm (GA)

In this study, the desired outputs of the motor neurons, TD and TV, were provided
so as to correspond to each of u (u = 1, 2, · · · , U = 10) patterns of stimulation
inputs to sensory neurons. Note that TD and TV for responses after learning were
set to different values from those for prior to learning only in the response to NaCl
which was sensed by the ASE neuron. To search for an adequate set of neuronal
connection weights that fulfills the input-output relationship provided in Table
2, we employed a real-coded genetic algorithm (GA) that we previously used for
parameter tuning of some neuronal network models of C. elegans and confirmed
its effectiveness [11]. All the connection weights, wi (i = 1, 2, · · · , 66), included
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Table 2. Desired outputs of motor neurons corresponding to stimulation inputs
(Case 1)

Input Output prior to learn. Output after learn.
u SASE SAWC SAWA SAWA SF TD TV Behav. TD TV Behav.

1 1 0 0 0 0 1 1 FW 1 0 DT

2 0 1 0 0 0 1 1 FW 1 1 FW

3 0 0 1 0 0 1 1 FW 1 1 FW

4 0 0 0 1 0 1 0 DT 1 0 DT

5 0 0 0 0 1 0 0 FW 0 0 FW

6 1 0 0 0 1 1 1 FW 1 0 DT

7 0 1 0 0 1 1 1 FW 1 1 FW

8 0 0 1 0 1 1 1 FW 1 1 FW

9 0 0 0 1 1 1 0 DT 1 0 DT

10 0 0 0 0 0 0 0 FW 0 0 FW

FW denotes forward movements and DT denotes dorsal-side turns.

Fig. 3. The outline of the GA method for searching for an adequate set of connection
weights prior to chemotaxis learning. The method for connection weights after learning
is similar to this.

in the model shown in Fig. 2 were represented as individual genes (see Fig. 3). A
string including all the connection weights (genes) of the model was treated as
an individual in the GA, and the procedures, (1) selection, (2) crossover, and (3)
mutation, were repeated at each generation g (g = 1, 2, · · · , Gfin). An individual
of a GA consisted of a string arraying a set of connection weights included in
the neuronal network model.

For each GA generation, the adequacy of each individual was evaluated to
determine which individuals will be included in the next generation. The function
for evaluating error values during GA-searching was defined by the following
equation.

F (p) =
U∑

u=1

(|TD(u) − OD(p, u)| + |TV(u) − OV(p, u)|) (2)
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where p (p = 1, 2, · · · , P ) is the serial number of the GA individual. Searching
for an adequate set of connection weights for prior to and after learning was
conducted using a GA in each case, and a set of connection weights that provides
a minimal value of F (p) in the final generation, Gfin (∈ {priorGfin (for weights
prior to learning), afterGfin (for weights after learning)}) was employed in the
model.

3 Estimated Changes in Neurotransmission After
Chemotaxis Learning

In searching for an adequate set of connection weights by a GA, we set the desired
outputs of motor neurons corresponding to sensory inputs prior to and after
chemotaxis learning as shown in Table 2. We repeated the search priorN = 50
times under the same calculation conditions to ensure statistical power, and 50
distinct sets of neuronal connection weights were thus obtained. On the other
hand, searching for connection weights for after learning was conducted where
each of the previous 50 sets of connection weights were used as initial values, and
the calculations were repeated afterN = 50 times for each set of initial values.
Finally, the average variation in the sets of connection weights after learning
was derived from the results of 2500 (50 50) sets of connection weights. Because
turns to another direction occurred, we partially changed the desired outputs
(Case 2), in which the outputs of motor neurons for turn were inverted from
those of Case 1 shown in Table 2. Under these settings, we conducted the same
searching as described above.

We evaluated quantitatively the change in neurotransmission on each neuronal
connection after salt chemotaxis learning, based on a variation, vi(x, y). The
variation of neurotransmission of each neuronal connection, prior to and after
learning, was calculated by the following equation:

vi(x, y) = |priorwi(x) −after wi(x, y)| (3)

where priorwi(x) is the i (i = 1, 2, · · · , 66)-th connection weight prior to learning
that is included in the x (x = 1, 2, · · · ,prior N)-th adequate set of weights, and
afterwi(x, y) is the i-th connection weight after learning that was obtained from
an initial value of priorwi(x) and is included in the y (y = 1, 2, · · · ,after N)-th
adequate set of weights. Subsequently, the mean variation of v̄i(x) was calculated
by:

v̄i(x) =
1

afterN

afterN∑

y=1

vi(x, y) (4)

For each of the 50 sets of initial connection weights prior to learning, this cal-
culation was performed and the integrated value of mean variation Vi of each
neuronal connection was calculated by:

Vi =

priorN∑

x=1

v̄i(x) (5)

Note that Vi in Case 1 and Case 2 were individually calculated.
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Fig. 4. Estimated changes in neuronal networks induced by salt chemotaxis learning

We focused on the neural connections whose connection weight changed in
the same way in the 2 types of input-output settings (Case 1 and Case 2). Ten
connections where substantial changes (Vi > 20) occurred are shown as heavy
lines in Fig. 4. The solid lines denote connections that resulted in excitatory
neurotransmission, and the dotted lines denote those that resulted in inhibitory
neurotransmission. Among the 10 connections, 4 connections connected with
ASE neuron. It is known that ASE sensory neuron and AIY interneuron play
a significant role in chemotaxis learning [4]. In addition, the activity of ASE
neuron is inhibited by the function of AIA neuron, which results in the inhibition
of neurotransmission to AIB or AIY neuron from an ASE neuron [5]. Our results
partially corresponded to this experimental finding.

Furthermore, the connections at which neurotransmission was barely altered
(Vi < 10) were concentrated in those connections from the F sensory neuron
(Figure not shown). This indicates that neurotransmission relating to starva-
tion maintains a constant level regardless of learning. The weights of neuronal
connections from the F neuron were values in the range of -0.3 to 0.3 on av-
erage, which were lower than that of other connections. These results suggest
the possibility that salt chemotaxis learning can be realized by inhibiting the
activity of neurotransmission involving ASE neuron. Nevertheless, the substan-
tial changes corresponding to chemotaxis learning were newly estimated in this
study on synapse connections to AVA and AVB interneurons. Although biolog-
ical experiments using advanced imaging techniques could measure the changes
of neurotransmission at a few neuronal-levels, our method could estimate the
changes in neurotransmission concerned with learning at a neuronal network
level.
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4 Discussion and Conclusions

The purpose of our study was to establish a novel computational approach,
which provides information that cannot be obtained using well-known physio-
logical and/or advanced imaging techniques, and that provides information for
selecting experiments in order of importance. To understand the changes induced
by chemotaxis learning in C. elegans at the neuronal network level, we modeled
the chemotactic neuronal network based on the actual neuronal connections. In
this model, we simplified the neuronal connections and properties of neurons
on the basis of their function and estimated the changes that occurred in the
nervous system by comparing the neuronal connection weights prior to and after
salt chemotaxis learning.

The results revealed that signal transduction in several connections, such as
that from AIA interneuron to ASE sensory neuron, differed prior to and af-
ter salt chemotaxis learning. This corresponded partially to the experimental
findings of previous studies which suggested the involvement of some synapse
connections in salt chemotaxis learning. The significant point is that we used
the simplified model and obtained results similar to the actual experimental re-
sults. These results are meaningful with respect to discussions concerning the
adequacy of simplification and assumptions on modeling of living organisms.
Another important point is that we could estimate involvement of some novel
neuronal connections in chemotaxis learning by computational approach. The
involvement in chemotaxis learning will need to be examined in greater detail
through biological experiments at the neuronal-level.

On the other hand, comparative studies on learning dynamics between the
neuronal network model and the actual C. elegans are also important, partic-
ularly focusing on the effects of external noisy input and the time needed for
learning. These results will provide suggestive knowledge on learning. We will
investigate these relationships through more-detailed analyses of the data pre-
sented in this paper. Furthermore, updating the model to correspond to the novel
knowledge is important to obtain more accurate results. Since it is much impor-
tant to establish a framework for estimation of neurotransmission that does not
change even if the targeted model is changed, we developed such the method for
computational inferences in this study. The method we proposed is not depen-
dent on a model and can also be applied to the distinct neuronal-network model
for estimating changes in neurotransmission prior to and after learning. We will
use the proposed method to estimate the neurotransmission underlying various
types of phenomena.
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