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Abstract—Recently, the demand for odor processing appara-
tuses is increasing in the fragrance and food industries. In this
paper, we propose a neural network model of the olfactory
system as basis for biomimetic E-Nose. The model has two
distinctive features. First, it converts the properties of odorant
molecule to the neural activity pattern of living mice. Second, the
olfactory ”Attention” mechanism is introduced. The simulation
results show that the model can predict the odor coding manner
on the glomeruli by appropriately adjusting the parameters.
Further, the tendency in accuracy rate of odor discrimination
is consistent with that of living mice.

Index Terms—Olfactory System, Neural Network Model,
Attention, Glomeruli activity pattern

I. INTRODUCTION

As considerable evidence has been reported that odors can
affect human memory and emotion [1], the odor informa-
tion and its evaluation method are becoming increasingly
important, especially in the fragrance and food industries.
Odor discrimination apparatus such as E-Nose is a reasonable
solution for objective odor evaluation [2]. In addition, the
E-nose would enable a moving robot to trace odors, which
could be used as the robotic police dog [3]. However, odors
are composed of combinations from tens of thousands of
different odorant molecules, and form extremely high dimen-
sional information. To reduce dimension of the information,
the ability of most odor discriminating apparatuses were
specialized for particular odor such as the E-Nose for banana
ripeness developed by Llobet et al. [2]. Therefore, there are
potential demands for higher performance E-nose. With such
motivation, biomimetic approach, such as introducing model
of the olfactory system, has begun to be utilized [4], [5],
because animals discriminate a number of different odors in
their daily life.

Although the ideal case is to make analysis on the olfactory
system of humans, well-developed higher brain function
would influence the natural odor sense, and make the problem
more complex. Provided such limitations, this study pays

attention to the olfactory system of mouse, because it is most
investigated and necessary biological data is available.

The olfactory system must, first, convert the odor infor-
mation into the activity pattern of neurons, then perform
recognition based on the neuron-coded signals. Odors are
perceived by receptor neurons distributed in the nasal and
turned into specific activity patterns of glomeruli on the
surface of the olfactory bulb. The main problem of this step
is: how to convert numerous odorants into different activity
patterns? The experimental data shown by Mori et al. [6]
and Johnson et al. [7] suggest that the odorants sharing the
similar chemical structure can stimulate the glomeruli at the
similar location. The activity patterns are then transfered to
the piriform cortex for odor recognition and discrimination.
The system, then, have to classify the inputted activity
patterns, and find the trade-off between robust classification
and differentiation in similar odors. This task was studied at
behavioral level by Okuhara et al. [9] where a series of odor
discrimination experiments on mouse implied Attention
mechanism exists in the olfactory system.

In this paper, an artificial neural network model is proposed
based on the structure of the olfactory system of mice. Our
model has two distinct features. First, odorant information is
converted into activity patterns of neuron model similar to
that of living mice. No such approach has been reported so
far, because most of the previous studies have focused on the
universal coding rules, but not on the actual activity patterns.
Second, Attention mechanism is introduced to the model.
Theses features enable the model to process odor information
more animal-like. The ability of the model is compared to
the results of odor discrimination experiments on mouse. To
perform this comparison, a simple directional control part is
built into the model.

II. BIOLOGICAL INSIGHT

A. Olfactory system of mice

This section briefs the basic structure of the olfactory
system that are taken into consideration. Fig. 1 shows the
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Fig. 1. Olfactory system of mice.

structure of the olfactory system of mice. The olfactory
system is composed of three parts: receptor neurons, olfactory
bulb, and piriform cortex. Receptor neurons that bind to
specific odorants are distributed on the surface of the nasal
chamber, expressing only one receptor gene from among a
thousand different genes [8]. When odorant molecules bind
to the receptor neurons, the neurons are activated and send
signals to the olfactory bulb. The axons from the receptors
that express the same gene terminate at the same point on the
surface of the olfactory bulb [6]. The terminals of those axons
form a small, round cluster called a glomerulus. A 2-D map
of the glomeruli distribution could therefore be associated
with the receptor genes as well as the odorants, and is thus
called an odor map [6].

Besides the glomeruli, mitral cells and granule cells are
the principal neurons in the olfactory bulb. The signals from
the glomeruli are inputted to the mitral cells. The mitral cells
are interconnected with each other through the excitatory and
inhibitory synapses, which are mediated by the granule cells.
In general, the olfactory bulb is considered to perform feature
extraction [10].

The mitral cells transmit the signal to the pyramidal cells
in the piriform cortex. The pyramidal cells transmit signals
back to the granule cells in the olfactory bulb and indirectly
inhibit the mitral cells. The piriform cortex is divided into the
anterior piriform cortex (APC) and posterior piriform cortex
(PPC); the division of their functions is slightly unclear.
Generally, the piriform cortex is believed to be responsible
for the identification of odors.

B. Odor discrimination experiment

Okuhara et al. has conducted a series of odor discrimina-
tion experiments on mice [9]. First, the mice are placed at the
point S, and trained to select a rewarded odor that emanates
from either end E1 or E2 as shown in Fig. 2(a). The rewarded
odor is composed of three types of odorants such as [IA, Ci,
EB]. The trained mice are, then, required to discriminate the
rewarded odor from other odors that share common odorants
with the rewarded odor, such as [IA] or [IA, EB], and so
on. Fig. 2(b) illustrates the results of the odor discrimination
experiment on 10 mice. The results have shown that most of
the mice have difficulty to discriminate [IA, EB] from [IA, Ci,
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Fig. 2. Results of the odor discrimination experiment. (unpublished data)

EB], and imply the mice provided attention to a combination
of the odorants [IA] and [EB] when they were learning the
odor [IA, Ci, EB]. Therefore, Attention mechanism similar
to that of vision also exists in the olfactory system, and
could largely contribute to characteristics of odor sensing.
Although, the mice learned difference in those two odors,
and improved the discrimination ability in the successive
experiments, in this paper we would focus on the mechanism
to establish Attention.

III. PROPOSED MODEL OF THE OLFACTORY SYSTEM OF
MICE

A neural network model is proposed (Fig. 3) based on the
structure of the olfactory system. The model decides direction
to the reward based on the input odor just as the mice do
in the odor discrimination experiments. In this section, the
overview of the proposed model is described first, then the
details of each part are given.

A. General model structure

The model consists of 4 parts: odor perception part, olfac-
tory bulb part, piriform cortex part, and directional control
part. The neuron population lN composing layer l are shown
in Fig. 3.

The odor perception part is a feed-forward neural network
of 3 layers, which are the preprocessing layer (l = 1),
odorant layer (l = 2) and receptor layer (l = 3). This
part converts the odorant properties into the activity pattern
of the glomeruli based on the experiment data on mice [7].

The olfactory bulb part consists of the Glomeruli layer
(l = 4), Mitral layer (l = 5), and Granule layer (l = 6).
The population of neuron in these layers were determined
based on the actual number of glomeruli distributed on the
olfactory bulb [7].

The piriform cortex part consists of the APC layer (l = 7)
and PPC layer (l = 8), which correspond to anterior
piriform cortex and posterior piriform cortex, respectively. It
acts as associative memory and performs Attention together
with the olfactory bulb. These mechanisms are introduced
applying engineered approach, however, the connections be-
tween each layer in the olfactory bulb part and piriform cortex
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Fig. 3. Structure of the proposed model. The activity pattern of glomeruli is cited from the literature [7]

part are set up based on the structure of the olfactory system
described in Section II-A. Note that the interconnections in
each layer are not included in the model for simplification,
thus the memory searching ability is omitted.

The directional control part, which determines the direction
leading to the rewarded odor, is introduced to simulate the
odor discrimination experiment described in Section II-B.
This part is composed of a single neuron, random number
generator (RNG), and a comparator.

Next subsection details each part of the model.

B. Details of the model

The perception part takes the odorant properties as the
input from the preprocessing layer. Because approximately
400,000 kinds of odorants exist, forming extremely high
dimensional information, it is impossible to input the odorant
information to the model in a binary coding manner. Thus, the
properties of each odorant are broken down into 16 numeric
properties (P = 16) listed in the left side of Fig. 3. These
properties have been listed by Johnson et al. [11] along with
the corresponding activity patterns.

In order to process the properties with different units and
orders, the preprocessing layer converts the value of the
properties into the activated neuron numbers for normaliza-
tion. This method is introduced based on the concept of
population coding [12]. For this purpose, the neurons in the
preprocessing layer are divided into 16 groups, and each
group receives a different kind of odorant property. Therefore,
the input to the neurons in the preprocessing layer is given
by the following equation:

1us(t) = Pi(mo), (s = (i − 1)K + k, k = 1, 2...K), (1)

where 1us(t) is the input to the sth neuron in the
preprocessing layer(l = 1) at time step t; mo, the mth

odorant in odor O; Pi, the ith numeric property of the odorant
mo; and K, the maximum number of neurons responsible for

property Pi. The inputs are transferred into the activity of
the neurons by the following sigmoid function:

1Us(t) =
1

1 + exp{−1εs(1us(t) − 1θs)} . (2)

The outputs of sigmoid neurons in other layers are also
calculated by the above equation. The threshold 1θs and the
gradient 1εs of the sigmoid function are determined according
to the corresponding property by the following equation:

1θs = k
(Pi,max − Pi,min)

K
, (3)

1εs = Cs
(Pi,max − Pi,min)

K
, (4)

where Pi,max and Pi,min are the maximum and minimum
values of the property Pi in an odorant data set, and Cs is a
constant.

The output of the preprocessing layer (l = 1) is inputted
to the odorant layer (l = 2) through a connective weight
matrix 1W(t). The input to the odorant layer is given by
the following equation:

2un(t) =
∑

s

21wns(t) 1Us(t), (5)

where 2un(t) is the input to the nth neuron in the odorant
layer, and 21wns(t) is the connective weight between neu-
ron units n and s, which is an element in the connective
weight matrix 21W(t). The odorant layer reconstructs the
odorant that is divided into 16 numeric properties in the
preprocessing layer. This layer is introduced to for avoiding
the loss of information caused by compressing the informa-
tion from the approximately 400,000 odorant dimensions into
the 16 property dimensions.

The output of the odorant layer is inputted to the receptor
layer (l = 3) through 32W(t). The input of the receptor
layer is given by the following equation:

3ur(t) =
∑

m

2wrn(t) 2Un(t), (6)
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This layer acts as the receptor that responds to the bound
odorants. The output of the neuron in this layer represents
the average response of a receptor cell expressing the same
receptor gene.

The output of the receptor layer (l = 3) is passed to
the glomeruli layer (l = 4). According to Lin et al. [13],
the activity of the glomeruli evoked by odor O can be
binary addition of the activity patterns evoked by its odrant
components. Thus, the input and output of the Glomeruli
layer is determined by the following equation:

4ue(t) = max[3Ur(t)|1o...
3Ur(t)|M o] (7)

The output 4Ue(t), which is calculated by Equation (2), is an
element in the activity pattern vector 4U(t). Each element in
the activity pattern vector corresponds to a divided lattice of
the activity patterns provided by Johnson et al. [7], as shown
in Fig. 3.

The output of the Glomeruli layer is input to the Mitral
layer. The Mitral layer forms 2 closed loop with APC and
PPC layer through Granule layer as shown in Fig. 3. The
input and output of the neurons in these layer are given by
the following equations:

5ub(t) =
∑

e

54Wbe(t)1Ue(t) +
∑

d

55Wbd(t)2Ud(t)

+
∑

m

56Wbg(t)3Ug(t), (8)

6ug(t) =
∑

z

67Wgz(t)7Uz(t) +
∑

x

68Wgx(t)8Ux(t), (9)

7uz(t) =
∑

b

75Wzb(t)5Ub(t), (10)

The outputs of the neurons are given by Equation (2) with
substitution of the layer number. However, the output of the
neurons in the PPC layer is proportional to its input con-
sidering the restrictions imposed by the learning algorithm
described in the next section.

The output of the Mitral layer is then input to the
neuron in the directional control part. Its input and output
are calculated using the following equation,

9u1(t) =
∑

b

95W1b(t)5Ub(t), (11)

The output 9U1(t) is computed by Equation (2), then com-
pared with the output of RNG, which generates uniform
random numbers on [0, 1], to decide the direction of rewarded
odor.

C. The learning phase

The learning algorithm for the neural network model
described in the previous section consists of 2 steps. In the
1st step, the actual activity patterns of glomeruli are utilized
to train the proposed model so that the Glomeruli layer can
produce activity pattern corresponding to the input odors.

Then, in the 2st step, the model is trained to extract feature
in the activity patterns of the Glomeruli layer based on the
odor discrimination experiment. The details of each step are
described bellow.

1) The 1st step of the learning phase: In the 1st step,
the connective weights 21W(t) and 32W(t) are adjusted to
produce activity patterns of Glomeruli layer corresponding
to the inputted odorants’ properties given by the training set.
The connective weights are adjusted to minimize the mean
square error (MSE) between the output of the glomeruli layer
and activity measured from actual glomeruli. For implemen-
tation of weight adjustment, the RPROP algorithm proposed
by Riedmiller et al. [14] is utilized.

2) The 2nd step of the learning phase: In the 2nd step,
the connective weights in the olfactory bulb and piriform
cortex are modulated based on the algorithm that we have
proposed [15]. This learning simulation is performed using
the connective weights that are adjusted in the previous simu-
lation. Because most computational functions of the olfactory
system have not been revealed clearly, in this paper, the
signal transduction or the modulation of connective weights
between the neurons are hypothesized based on the odor
discrimination experiment described in section II-B [9]. We
assume that the olfactory system extracts the most activated
regions in the glomeruli. With regard to these assumptions,
we propose a learning algorithm that consists of the following
3 steps.

In the 1st step, the connective weights 75W(t) and 67W(t)
are modulated to extract activated parts from the background
activity of the neuron. The output of the bth neuron in
the Mitral layer to an arbitrary odor A is assumed to
be 5Ub(t)|AO; the background activity, 5Ub(t)|back. Then,
assuming that the odors are identified in the APC layer,
the outputs of the zth neuron in the APC layer are prelim-
inarily determined to be 7Uz(t)|AO and 7Uz(t)|back for the
odor A and background activity, respectively. Provided these
assumption, the connective weights 75W (t) and 67W (t) are
modulated by the following equation:

75Wzb(t + 1) = α75Wzb(t) + β5Ub(t)|AO
7Uz(t)|AO,(12)

67Wgz(t + 1) = α67Wgz(t) + β7Uz(t)|AO
5Ub(t)|back,(13)

where α denote the forgetting term; β, the learning rate.
When odor A is input, through the connective weights
75W (t) and 67W (t), the background activity of the Mitral
layer is produced on the Granule layer. Then, the outputs
of the Granule layer inhibit the neurons in the Mitral
layer through 56Wbg = −δbg. Consequently, the background
activity on the Mitral can be subtracted by this step.

In the 2nd step, the most activated neurons are extracted.
After the learning step 2, it is considered that the neurons of
the Mitral layer with the strongest outputs could be the most
effective feature of the odor A. In the proposed model, we
assume that the connective weights between the Mitral layer
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and the PPC layer form a competitive system. Thus, the
corresponding connective weights are determined according
to the competitive system proposed by Amari et al. [16];
these connective weights include self-feedback connective
weights 55W(t) in the Mitral layer, feed forward connective
weights 85W(t) from the Mitral layer to the PPC layer,
and the feedback connective weights 68W(t) from the PPC
layer to the Granule layer.

Finally, in the 3rd step, the activity pattern of the Mitral
layer after the 2nd step is memorized by adjusting the
connective weights 95W(t); the weights are determined by
the following equation:

95W1b(t) = 5Ub(t)|AO. (14)

D. Directional control

In the directional control simulation, an arbitrary odor B
is inputted to the model. The input to the directional control
part can be calculated by using Equation (11) as follows:

9u(t)|BO =
∑

b

95W1b(t)5Ub(t)|BO

=
∑

b

5Ub(t)|AO
5Ub(t)|BO. (15)

Accordingly, calculating the input is equivalent to calculating
the correlation between the current output 5Ub(t)|BO and
the memorized output 5Ub(t)|AO of the Mitral layer. Now,
assuming the proposed model is sniffing an odor sent from
right arm of the Y-maze, if the output of the neuron is larger
than that of RNG, then the directional control part would
choose the right arm, otherwise it choose the left arm. The
RNG may represents the randomness in mices’ behavior as
they scarcely make 100% of accuracy rate, or choose wrong
end on purpose to confirm their given task.

IV. SIMULATION

This section describe the simulations that are performed
based on the algorithm described in the previous section.

A. The 1st step of the simulation

First, 70 odorants data are randomly selected from the 365
odorants provided by Johnson et al. [11] to form the first part
of the training set (training set I). Then, several odorants
are chosen arbitrary for the second part of the training data
(training set II). The properties of the odorants in the training
set are input to the model, and the connective weights are
adjusted by the RPROP algorithm.

Fig. 4 shows the outputs of the model after the training
is completed. In Fig. 4, the molecules in the uppermost row
are the inputted odorants, which are followed by the actual
activity patterns [7], the output of the model, and the graph of
MSEs. The odorants with a gray background are included in
the training set, while those with no background color are not.
From this figure, we can observe that the MSE for the training
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set is below 0.002, while that for the untrained odors ranges
from about 0.007 to 0.015. The reason for decanal recording
the highest MSE is that, unlike in the case of hexanal and
octanal, an odorant with one more carbon is not included in
the training set. Overall, it can be observed that the model
could interpolate the tendency in the continuous changing of
activity patterns along with the carbon number.

B. The 2nd step of the simulation

In the learning phase, an odor [IA, Ci, EB], which stands
for an odorant mixture composed of isoamyl acetate, citral,
and ethyl butyrate, is input to the proposed model; The con-
nective weights then are adjusted according to the learning
algorithm described in Section III-C2. The initial values of
the connective weights are determined by the uniform random
values ranged between −10−5 and 10−5.
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After the learning phase, 6 different odors [IA], [EB], [Ci],
[IA, EB], [IA, Ci], and [Ci, EB] are input to the model,
and 1000 trials were attemptted for each odor. Note that,
the connective weights are fixed at the values determined
in the 1st step. Then, the decisions made by the directional
control part are compared with the correct rates in odor
discrimination experiments on the mice. The accuracy rate of
the directional control part is defined as the ratio of choosing
rewarded odor [IA,Ci,EB] to the total trial number.

The outputs of the Glomeruli layer to each odor are
shown in the lowest row in Fig. 5. The outputs of the
Mitral layer after the 2nd learning phase are shown in the
middle row in Fig. 5. The accuracy rate of the decisions
made by the directional control part are plotted at the top
of Fig. 5. Further, the correct rates obtained from the odor
discrimination experiment on the mice are plotted beside the
accuracy rate of the directional control part.

Comparing the activity patterns of the Glomruli layer to
that of the Mitral layer, it can be observed that the activated
region becomes narrow, but its activity becomes stronger.
Therefore, the model extracted the most activated region
in the Glomruli layer. As described in Section II-A, the
directional control part make decision based on the pattern
on the Mitral layer, thus, the similar extracted pattern with
that of rewarded odor would lower the accuracy rate. This
tendency is illustrated in Fig. 5, from which we can observe
that the accuracy rates of the experiment and the model are
highly correlated to each other. From this result, we can
conclude that, up to an extent, the feature extraction property
of the model is consistent with Attention mechanism of the
living mice.

V. CONCLUSION

In this paper, we proposed a neural network model of the
olfactory system of mice. Utilizing the model, we tried to
predict the activity pattern in glomeruli evoked by odorants.
The simulation results showed that the model was capable
of predicting the activity patterns of untrained odors that had
different carbon numbers with the trained odors, and showed
consistency with those of the odor discrimination experiments
on mice, which indicated that the model has an ability
similar to Attention. Although we only discussed about odor
discrimination characteristics affected by Attention in this
paper, by adjusting the parameters in the model, relearning
ability can also be introduced by adjusting the connective
weights.

However, odors in nature are composed of odorants in
different concentrations, which is not accounted for in the
proposed model. Therefore, in the next step, the odor coding
manner for different concentration have to be studied. In
addition, as we have only performed Attention simulations on
odorants [IA], [Ci], and [EB] with limitation of experiment

data, we plan to conduct further odor discrimination exper-
iments on mice by using other types of odorants. Further,
to simulate more animal-like perception, we would like to
introduce interconnection between glomeruli and consider the
signals from other parts of the olfactory system.
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