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Abstract—This paper proposes a virtual EMG-prosthetic
hand system using a neural network available in an fMRI
room. A subject attaches surface electrodes on his forearm,
and manipulates the virtual EMG-prosthetic hand visualized
with 3D computer graphics by using visual biefeedback
projected on a screen in the scan room. The preliminary
experiments demonstrate that the intended hand motion by
the subject can be determined with high discrimination rates
over 96 % without decaying MRI images. Finally, in order
to show the validity of the proposed system, we report the
neurological experiments that were carried out to analyze
human brain functions.

I. INTRODUCTION

It has been increased the number of people amputated
their upper extremities by labor accident, traffic accident,
or a land mine in the world. Most of such amputees
equip a cosmetic prosthetic hand or an internally powered
prosthesis, while an externally powered prosthesis using
electric motors is seldom employed mainly because of
three aspects; no financial public support for purchasing,
the insufficient performance of its hardware, and the inex-
perienced skill of an amputee in operating such electric-
driven prosthesis. So far, many efforts have been paid to
develop an intelligent prosthetic hand with much higher
functions by using electromyographic (EMG) signals, but
less attention to design an effective training method for an
amputee to become skilled in the use of such intelligent
prosthesis. ‘

There have been a few studies on a training method for
operating an EMG prosthetic hand. For example, Dupont
and Morin proposed a training system for manipulating
the powered prosthetic hand by using computer graphics
[1], in which a trainee can control a virtual hand created
by computer graphics according to his muscle contraction
level. However the training motions in their system are
only hand open and close. There exists an assistant tool
for an EMG prosthetic hand that can suggest the suitable
positions to attach electrodes and the amplification factor
in measuring EMG signals [2]. However it is difficult to
apply into the training because the available information is
too small. Then, Tsuji et al. constructed a training system
which advices much intelligible visual information for the
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functional recovery of muscle activation control needed
in manipulating an EMG prosthetic hand [3]. They also
reported that the amputee could obtain the sensation that
he manipulated the prosthetic hand as his own hand in the
progress of the training with the developed system. This
suggests that some brain functions of a trainee may be
changed by the training effect. If the skill level of operating
the prosthesis can be evaluated from brain functional
activations, it can be utilized as an effective index for the
training and also as the basic data for developing a novel
training methodology.

On the other hand, magnetic resonance imaging (MRI)
has been the primary technique for the diagnosis and
treatment of neurological disorders, and provides detailed
images of the interior of human brain structures that may
not be visualized with other imaging methods [4]. The
MRI can observe the change of blood volume in different
area of a human brain with high spatial resolution, and
it is called fimctional MRI (functional magnetic resonance
imaging: fMRI) [5]. A number of studies have been carried
out to analyze brain functions by using fMRI [6}-[8]. For
example, Flament et al. reported that the activation area
of a brain is gradually straitened as the training goes on
under the visual-motor task using a joystick [6]. However,
these researches focusing on motor control function did
not discuss the quantitative relationship between functional
activations of a human brain and biological signals, such as
EMG, electrocardiogram (ECG) and so on, during a motor
task, mainly because there does not exist a measuring
system of such a biological signal available in the fMRI
environment. As a result, there has been no research on
functional activations of a brain in manipulation of an EMG
prosthetic hand.

In this paper, as a first step for the quantitative analysis
of human brain activations accoridng to the skill level in
manipulating an EMG prosthetic hand, a virtual EMG pros-
thetic hand available in fMRI measurements is developed.

II. EMG MEASUREMENTS IN AN MRI EQUIPMENT

Since the MRI uses radio waves and strong magnetic
field with high tesla for acquiring fMRI images, tremen-
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Fig. 1.

The overview of an EMG measuring system

dous strong noise signals are induced in the measured EMG
signals. This section describes an EMG measuring system
available in the fMRI that can discard such induced noise
signals in detail.

A. Configuration of an EMG measuring system

Figure 1 illustrates an overview of the developed mea-
suring system of EMG signals in fMRI measurements.
An EMG measuring instrument as well as a computer for
signal processing and MRI control is set at the outside of
the scan room, because such instruments made of magnetic
matters cause a mechanical failure of the MRI and a serious
medical accident.

The EMG signals measured from surface electrodes
are transmitted to an EMG amplifier (NTHON KOHDEN,
MEM-4204) by signal cables through the waveguide as
shown in Fig. 1, and are amplified 500 times after filtering
out with the band-pass filter (cut-off frequency: 10 [Hz]
for the lower and 500 [Hz] for the upper). The amplified
signals are then inputted into a computer by an A/D
converter (sampling frequency: 1.0 [kHz]; quantization: 12
[bits]).

The computer controls the scanning timing of fMRI
images by transmitting the trigger signal toward the MRI
equipment (MAGNETOM SYMPHONY: SIEMENS, the
static magnetic field strength: 1.5 [T]; the gradient mag-
netic field strength: 34 [mT/m]; the type of magnet: su-
perconductivity) via an electric-optical converter without
inducing external noises into the scan room, so that the
start time of measuring EMG signals and fMRI images
can be synchronized in the experiment.

B. Discarding nosed EMG signals in fMRI

Figure 2 shows an example of EMG signals during the
wrist flexion measured at the outside and inside of the scan
room, in which a pair of electrodes was attached to extensor
carpi ulnaris of the subject (male, Age 23). The EMG
signal in the figure (b) was recorded with the developed
measuring system during fMRI measurements. As shown
in Fig. 2(b), the remarkable noise signals are observed in
the EMG signal. It is thus required to remove such noise
signals from EMG signals for the functional analysis of a
human brain in a motor task with fMRI images.

Such noise signals are induced by the change of gradient
magnetic field and radio wave for acquiring each tomo-
graphic image of a brain, and the time of changes depends
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Fig. 3. Noise signals with respect to the fMRI sequence parameters

on the number of tomographic images for acquiring the
three-dimensional image of a whole brain (S,), the time
for acquiring a set of S,, images (7, ), and the time between
repetitions of the sequence (7). Then, the time interval
for acquiring each fMRI image (T;) can be settled by 7;
= To/Sn.

Here, the developed system can manage the repetition
time 7, to match the starting time of measuring EMG
signals and fMRI images by sending the trigger signal to
the MRI equipment. Therefore, it is possible to control
the time period of generating noise signals on EMG
signals by regulating the three sequence parameters in
fMRI measurements, ie., 7., 7, and S,. Paradoxically,
it can be much expected to obtain a meaningful EMG
signal by discarding noised EMG signals signal in fMRI
measurements based on the relationship between the noise
signal and the sequence parameters.

Figure 3 shows the measured EMG signals in the scan
room under the sequence parameters were set as 7, = 11
[s], T, = 8.8 [s] and S, = 40. It can be seen that T; is
almost agreed with the calculated time 220 [ms]. It should
be noted that the noise signals are induced only during
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the time period Ty (about 110 [ms}]). This indicates that
an EMG signal can be measured without affected by the
scanning of fMRI images during the time period (T} — T).

C. Measuring experiment of EMG signals

The EMG signals were measured with a subject (male,
Age 23) in which four pairs of electrodes were attached to
four muscles in his right arm (Ch 1: extensor carpi ulnaris,
Ch 2: flexor carpi ulnaris, Ch 3 and Ch 4: flexor carpi
radialis). In the experiment, the subject was asked to extend
his wrist joint from 5.0 [s] to 10.0 {s] according to the voice
instruction from the interphone.

Figure 4 shows an example of the experimental results
under the same sequence parameters in Fig. 3 with Ty =
130 [ms]. The figure (a) is the EMG signals measured at the
outside of the scan room; the figure (b) and (c) represent
at the inside of the scan room during fMRI measurements
without and with the proposed algorithm for noised signals,
respectively. Muscle contraction cannot be observed from
the EMG signals in the figure (b) because of the heavy
noise arose from the changes of radio wave and gradient
magnetic field. On the other hand, it can be seen that
the amplitude and motion pattern of EMG signals by the
proposed algorithm (Fig. 4(c)) are almost agreed with those
at the outside of scan room (Fig. 4(a)).

From the above experimenial results, it can be confirmed
that a meaningful EMG signal can be measured by utilizing
the fMRI sequence parameters although the frequency in-
fofmation of the EMG signal is lost as a result of discarding
the noised signal measured during the time period 7.

IIT. VIRTUAL EMG-BASED PROSTHETIC HAND SYSTEM
FOR MRI ENVIRONMENTS

Figure 5 shows an overview of the developed virtual
EMG prosthetic hand control system in this paper. This
system estimates an operator’s intended motion from the
de-noised EMG signals explained in the previous section
by using a neural network, and presents smooth hand
motions similar to those of the human hand by means of
the impedance control method. The following subsections
describe each part of the proposed virtual hand system in
detail.

A. Feature extraction of the EMG signals

First, the EMG signals measured from L pairs of elec-
trodes are processed to gauge the meaningful EMG signals
by means of the proposed algorithm explained in II-B for
manipulating the virtual prosthetic hand. The de-noised
EMG signals are then rectified and filtered out through 2
second order Butterworth filter (cut-off frequency: 1 [Hz])
in which a zero-order hold is applied in the time period of
removing noise signals.

The processed EMG signals EMG(t) (I = 1,---,L)
are normalized with the sum of L channels by

EMG(t) - EMGSt
SL_(EMGu(t) - EMGS)
(=1,---,L)

zi(t) =

8]

als for The filter
using the g ad

Fig. 4. lsolation of the induced noise signal from the EMG signals using
the proposed method

where EMG{' is a mean value of EMG,(t) measured
in the rest condition. An EMG pattern for each hand
movements of an operator can be represented by the vector
2(t) = [11(t), 2(1), -,z (1)]T € RE.
B. Pattern classification of hand motions

In this paper, a log-linearized Gaussian mixture network
(LLGMN) [9] is utilized as a neural network to estimate
the intended hand motion of an operator, which can provide
high discrimination performance of a biological signal that
much changes depending on individuals, physical fatigue,
perspiration, and so on.

The input of the LLGMN X () € R¥ is created with
the vector z(t) € RL as follows:

X)) = L))’ nbz@),
z1 ()L (L), z2(t)?, z2(t)23 (1),
coyaa®zL @),z @ @)
The first layer consists of H (H = 1+ L{L + 3)/2) units
corresponding to the dimension of X (¢}, and the identity
function is used for an activation function of each unit.
Each unit {¢,m} (¢ = 1,---,C;m =1,---, M.} in
the second layer receives the output (VO (t) of the first
layer weighted by the coefficient wgf’m). The relationship
between the input (*'I, . (£) and the output DO, . (t) in
the second layer is given by
H
(2)Ic,m(t} — Z (1)01;(13)?1},(5’"1),
ha=1

exp[® I m ()]
A, ;

c
Z Z exp[@)lc’,m’(t)}
c'=1m'=1
where w{SMe) = 0 (A = 1,2,---, H), C and M, denote
the number of classes and the number of components
belongs to class c.

&)

@ Ocm (t) =

4
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Fig. 5. The overview of an EMG measuring system

The unit ¢ in the third layer integrates the outputs of M,
units in the second layer, and the relationship between the
input (9 1.(t) and the output (¥0,(t) is described as

M.
L) =Y D0.mlt),

me=1
Ye(t) =9 I(2). O]

The output of the third layer Y.(f) correspond to a
posteriori probability of the class ¢ for the inputted EMG
pattern x(t).

The LL.GMN is trained via a supervised learning with
a teacher vector T® = (Tf”,---,Té”,-n,Tg))T for
the input vector x(f) that created from the actual hand
motion measured in the preliminary exFeriment, where
Tc(t) = 1 for the particular class ¢ while Tcg) == () for all the
other classes. The learning of the LLGMN is performed to
maximize the likelihood via minimization of the following
energy function J as

T T C
T=Y J==3 > TOlogY(t), N
t=1

=1 c=1
in which the learning rule is designed with the concept of
terminal attractor (TA) [10] so that the convergence time
of the function can be specified.

(5)

C. Motion discrimination of the virtual hand

The discrimination of hand motions is conducted ac-
cording to the entropy of LLGMN’s outputs and the force
information to recognize whether the motion has really
occurred or not.

The entropy indicates, or may be interpreted as, a risk
of ill-discrimination [11], and it can be calculated with the
outputs of the LLGMN, a posteriori probability of each
motion ¢, as '
ngl Ye(t)log, Y(t)

log, C
where large entropy means that the output of the LLGMN
is ambiguous.

Then, the force information Fgarg(t) is calculated in
order to decide the beginning of hand movements by

H({t) = — , ®

L
1
Fenc(t) = ¢ S (EMG(t) - EMG®).  (9)
=1

Fig. 6. A link model of the virtual prosthetic hand
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The determination is suspended when the entropy is over
the specified threshold H; defined beforehand. While the
Bayes decision rule is utilized to determine a specific class
under the entropy is less than Hy. The final decision for
controlling the virtual hand motion is performed only in the
case that the force information Fzasc(t) is over the normal
threshold F; which is the calculated value beforehand
when the hand motion is appeared.

D. Biomimetic impedance controf of the virtual hand

The virtual prosthetic hand has 22 joints as shown in Fig.
6, and its motion of each joint is impedance-controlled with
the human hand impedance properties on the basis of the
determination result and the force information Frarg{t) so
that a operator can manipulate the virtual hand naturally
as if he moves his own hand.

The dynamics of the j-th joint of the virtual hand is
written by

Ijé}' + Bj(ﬁ!j)ﬂ'j +Kj(a’j)(0j - 9?) =T;— Tjex’

75(t) = a;(O)775%%,

(10)
an

where «; denotes the muscular contraction ratio for the
j-th joint motion; I;, Bj(a;) and K;{a;) denote the joint
inertia, viscosity and stiffness, respectively; 6; and g are
the computed and the equilibrium angles of the j-th join;
and 7;, 777 and 777°7 are the joint torque, the external
torque and the prespecified maximum torque in the motion
c{c=1,---,C\

The muscular contraction ratio ¢ is calculated by using
Fema(t) as
Feme(t)

max
F c

ay () = (12)
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where F"* i the mean value of Fgpyg measured in
the maximum voluntary contraction (MVC) for the motion
¢. The joint viscosity and stiffness are modeled with a
nonlinear function with respect to o; as

Bj(ag) = ;10" + ;.3
Kj(aj) =

(13)

10! ks.2 +kj3 (14)

where b; 5, kjn (n=1,2,3) are experientially determined
with reference to the estimated impedance parameters of
human arm as shown in Table I [12].

IV. EXPERIMENTS
A. Virtual hand operation experiments

The verification of the proposed virtual hand system
were carried out with five normal subjects in fMRI mea-
surements, in which the MRI equipment was controlled
under the same sequence parameters settled in Fig. 4. In
the experiments, a subject was instructed to change his
hand motion as open, grasp, extension and flexion (C = 4}
according to the beep sound from the computer in the order.

Figure 7 shows an example of the experimental results
by Subject A, where the four pairs of electrodes were
attached to his right forearm (Ch 1: flexor digitorum
profundus, Ch 2: flexor pollicis longus, Ch 3: flexor carpi
ulnaris, Ch4: Extensor carpi ulnaris). In order from the top
" of Fig.7, the measured EMG signals during fMRI mea-
surements, the EMG signals by the proposed algorithm of
discarding noised signals, the force information Frua(t),
the entropy H(t), and the discrimination results of hand
motion are plotted. It can be seen that the hand motions
intended by the subject can be successfully estimated from
the EMG signals measured during fMRI measurements
although the large noise signals are induced.

The discrimination rate of hand motions were 100.0 %
for Subject A, 99.9 % for Subject B, 96.7 % for Subject
C, 96.2 % for Subject D, and 98.8 % for Subject E.

B. Human brain activations in the virtual hand operation

Finally, human brain functions were investigated with
subjects during the motor control task using the developed
virtual hand system, in which four pairs of electrodes were
attached to the subject’s right forearm (Ch 1: extensor carpi
ulnaris, Ch 2: flexor carpi ulnaris, Ch 3 and Ch 4: flexor
carpi radialis). The fMRI measurements were conducted
with the same sequence parameters in Fig. 7 (T)- = 11 [s],
S, = 40, TE = 60 [ms]) by means of the single-shot echo-
planar image (EPI) under matrix size: 64 x 64, FOV: 192
[mm], voxel size: 3 x 3 x 3 [mm®], and the number of
the functional volume in each task: 30.

In the analysis of human brain activations using fMRI
images, the relevant tasks are carried out along the designed
paradigms that have generally several periods of rest alter-
nating with several periods of activation. Therefore, in this
paper, two experimental conditions of the motor task, hand
open/grasp motion, were prepared by using the developed
virtual hand system with the designed paradigms as shown
in Fig. 8;
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Fig. 7. An example of the virtual hand operation experiments (Subject
A)

e Task 1. A subject is instructed to rest and close
his/her eyes in the rest period, while perform the hand
open/grasp motion in time to the beep sound without
opening his eyes in the activation period.

« Task 2: A subject is instructed to rest and close
his/her eyes in the rest period, while perform the hand
open/grasp motion in time to the beep sound with
watching the virtual hand projected on the screen in
the activation period.

The beep is regularly sounded with the interval time at 1.1
[s] during MRI measurements including the rest period
to eliminate the influence of auditory stimuli on brain
activations for a given motor task in the fMRI image
analysis.

The fMRI image processing for identifying functional
activations of a human brain was performed by Statistical
Parametric Mapping (SPM) {13] with SPM99 implemented
in MATLAB 5.3 (Math Works Inc¢). The acquired fMRI
images were regulated on the basis of the first volume
by the rigid body transformation and normalized into
anatomical standard stereotaxic space with the Montreal
Neurological Institute template (MNI) because of the indi-
vidual differences in the shape of a brain. The normalized
images were spatially smoothed by a Gaussian filter (full
width at half maximum: 8 [mm]) to remove the other
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Fig. 8. The fMRI paradigms used in the experiments

individual differences.

Figure 9 shows the examples of brain activation maps
for each task, where the warm colors represent functional
activation area for the given motor task. It can be seen
that primary motor area and sensorimotor cortex activate
in both tasks. In addition to these area, bilateral primary
. visual area, bilateral visual association area, bilateral ven-
tral premotor corfex activate in Task 2. These differences
between the brain activation maps of Task 1 and Task 2
represent the brain functions for manipulating the virtual
prosthetic hand.

Thus, it can be expected fo reveal important brain
functions fo operate a prosthetic hand via experiments
with healthy volunteers using the developed system, and
to collect basic data that will be useful to develop a skill
training method of manipulating an EMG-prosthetic hand
for amputees [14].

V. CONCLUSIONS

This paper has proposed a measuring method of EMG
signals in fMRI measurements by using the scanning
timing of fMRI images. Then, the virtual EMG prosthetic
hand system has been constructed for the analysis of human
brain activations accoridng to the skill level in manipulating
an EMG prosthetic hand. The preliminary experiments with
the subjects demonstrated that the intended hand motion of
the subject could be determined with high discrimination
rates without decaying fMRI images. Finally the neurolog-
ical experiments using the developed system were carried
out to analyze brain functions in operating the virtual hand.

Future study will be directed to improve a signal process-
ing method to isolate noise factors due to the acquisition of
fMRI images from the biological signal, and also investi-
gate the differences on brain activation during operation of
the virtual hand between a normal subject and an amputee.
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