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��������—This paper presents a nonlinear output feedback
controller design method that integrates the guaranteed cost con-
trol approach for a class of discrete–time system with parametric
uncertainties and neural networks (NNs). Based on the Linear
Matrix Inequality (LMI) design approach, a class of output feed-
back controller is established, and some sufficient conditions for
the existence of guaranteed cost controller is derived. The novel
contribution is that the neurocontroller is substituted for the addi-
tive gain perturbations. Although the neurocontroller is included
in the uncertain system, the closed–loop system is asymptotically
stable and the closed–loop cost function value is not more than
specified upper bound for all admissible uncertainty. A numerical
example is given to illustrate the computational efficiency of the
proposed method.

I. INTRODUCTION

The output feedback problem for uncertain dynamic systems
has been received much attention. For these problems, the guar-
anteed cost control for the uncertain discrete–time system by
means of the output feedback control based on Riccati equa-
tion has been discussed in [1]. Recently, the guaranteed cost
control problem for a class of the uncertain system with delay
which is based on the Linear Matrix Inequality (LMI) design
approach was solved by using the output feedback [2]. How-
ever, due to the presence of the design parameter for the LMI,
it is known that the cost performance becomes quite large.

Neural networks (NNs) have been utilized for an intelligent
control system because NNs have nonlinear mapping approxi-
mation property. Both state and output feedback neural regula-
tors for nonlinear plants were designed [3]. As another impor-
tant studies, the linear quadratic regulator (LQR) problem using
multiple NNs has been investigated [4, 5]. However, these ap-
proaches may cause instability of the system, since in these re-
searches the stability of the closed–loop system which includes
the neurocontroller has not been considered.

In this paper, the output feedback guaranteed cost control
problem of the discrete–time uncertain system with the neu-
rocontroller is discussed. A static output feedback control
is designed such that the cost of the system is guaranteed to
be within a certain bounded for all admissible uncertainties.
Firstly based on the LMI, a class of fixed static output feed-
back controller of the discrete–time uncertain system with the
gain perturbations is newly derived. Secondly, in order to re-
duce the large cost performance NNs are used. The new idea is
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that the neurocontroller is substituted for the additive gain per-
turbations. As a result, although the neurocontroller is included
in the discrete–time uncertain system, the robust stability of the
closed–loop system and the adequate cost performance are at-
tained. Finally, in order to demonstrate the efficiency of our
design approach, the numerical example is given.

II. AN LMI–BASED DESIGN APPROACH

Consider the following class of uncertain discrete–time linear
system:

x(k + 1) = [A + D1F (k)E1]x(k) + Bu(k), (1a)

y(k) = Cx(k), (1b)

u(k) = [K + D2N(k)E2] y(k), (1c)

where x(k) ∈ �n is the state, y(k) ∈ �m is the output,
u(k) ∈ �l is the control input, A, B, C , D1, E1, D2 and E2

are known constant matrices, K is the fixed gain matrix for the
controller (1c), and F (k) ∈ �p×p is unknown matrix function
and N(k) ∈ �q×q is the output of NN. It is assumed that F (k)
and N(k) are satisfying

F T (k)F (k) ≤ Ip, N
T (k)N(k) ≤ Iq . (2)

Block diagram of a new proposed method is shown in Fig. 1,
where L is a time lag diagram. It should be noted that the con-
troller (1c) has the neurocontroller as the additive perturbations
as D2N(k)E2.

Associated with the system (1) is the following quadratic cost
function

J =
∞∑

k=0

[
xT (k)Qx(k) + uT (k)Ru(k)

]
, (3)

where Q and R are given as the positive definite symmetric
matrices. In this situation, the definition of the guaranteed cost
control with the additive gain perturbations is given below.

Definition 1 : For the uncertain system (1) and cost function
(3), if there exist a control gain matrix K and a positive scalar
J∗ such that for the admissible uncertainties and gain pertur-
bations (2), the closed–loop system is asymptotically stable and
the closed–loop value of the cost function (3) satisfies J < J∗,
then J∗ is said to be a guaranteed cost and K is said to be a
guaranteed cost control gain matrix of the uncertain system (1)
and cost function (3).

In the above definition, it can be observed that the notation of
guaranteed cost control is extended to the notation of quadratic
stabilization. Moreover, the above definition is very popular for
dealing with time–varying uncertainties and is also used in [6].
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Fig. 1. Block diagram of proposed system.

The following lemma shows that the guaranteed cost control
for the uncertain system (1) will define the upper bound on the
cost function (3).

Lemma 1 : Consider the following matrix inequality under the
uncertain discrete–time system (1) with the cost function (3);

xT (k + 1)Px(k + 1) − xT (k)Px(k)
+xT (k)

[
Q + CT (K + D2N(k)E2)T R

×(K + D2N(k)E2)C
]
x(k) < 0, (4)

for all nonzero x(k) ∈ �n, the uncertain matrices F (k), and
the gain perturbation N(k).

If such condition is met, the matrix K of the controller (1c)
is the guaranteed cost control gain matrix associated with the
cost function (3). That is, the closed–loop uncertain system

x(k + 1) = [(A + D1F (k)E1)
+B(K + D2N(k)E2)C]x(k) (5)

is stable and the closed–loop value of the cost function (3) sat-
isfies

J < J∗ = xT (0)Px(0). (6)

Proof : Let us define the following Lyapunov function candidate

V (x(k)) = xT (k)Px(k). (7)

where P is the positive definite matrix. Then, the proof can be
done by using the similar technique in [7]. In this paper, it is
omitted. �

The objective of this section is to design a static output feed-
back gain matrix K for the discrete–time system (1) with the
uncertainties and the gain perturbations (2).

Theorem 1 : Consider the uncertain discrete–time system (1)
with the cost function (3). For the uncertain matrices F (k) and
the gain perturbation N(k), if the LMIs (8) ∼ (10) have feasi-
ble solutions such as symmetric positive definite matrices X ∈
�n×n and Y ∈ �n×n, and positive scalar εi > 0, i = 1, 2,
then K is the guaranteed cost control gain matrix. Further-
more, the corresponding value of the cost function (3) satisfies
the following inequality (11) for the admissible uncertainties
F (k) and the gain perturbations N(k);

J < J∗ = xT (0)X−1x(0) = xT (0)Y x(0). (11)

Proof : Let us introduce the matrices X = P−1 and Y = P .
Using the result in [8], the LMI (8), (9) yields (12). Applying

Schur complement [9], and using a standard matrix inequality
[10] for the admissible uncertainties and the gain perturba-
tions (2) to the LMI (12), moreover, applying Schur comple-
ment to the matrix inequality, it is easy to verity that the LMI
(12) satisfies the matrix inequality (4).

On the other hand, since the results of the cost bound (11) can
be proved by using the similar argument for the proof of Lemma
1, it is omitted. �

In this paper, in order to find the matrix pair (X, Y ) such that
the pair satisfies the LMIs (8) ∼ (10) and X = Y −1 > 0, make
use of the following algorithm [11].

Algorithm : For solving the above problem, the linearization
algorithm is conceptually described as follows.

1) Find a feasible solution set (ε0
1, ε0

2, X0, Y 0) for satisfying
the LMIs (8) ∼ (10). If there are none, exit. Set r = 0.

2) Set V r = Y r, W r = Xr and find Xr+1, Y r+1 that solve
the LMI problem

Minimize Tr(V rX + W rY ) subject to (8) ∼ (10).

3) If a stopping criterion is satisfied, exit. Otherwise, set r =
r+1 and go to step 2).

A solution set of (ε1, ε2, X, Y ) is easy to acquire, because
the algorithm is simple LMI problem. Moreover, it is shown in
[11] that the algorithm converges.

III. NEURAL NETWORKS FOR ADDITIVE GAIN
PERTURBATIONS

The LMI approach for the uncertain discrete–time systems
usually results in the conservative controller design due to the
existence of the uncertainties F (k) and the gain perturbations
N(k), which lead the large cost J . The main purpose of this
paper is to introduce NN as the additive gain perturbations into
the discrete-time uncertain system to improve the cost perfor-
mance. Note that the proposed neurocontroller regulates its
outputs in real–time under the robust stability guaranteed by
the LMI approach.

A. On–line learning Algorithm of neurocontroller

It can be much expected that the reduction of the cost will
be attain when the uncertain discrete–time system performs the
nominal closed–loop system.

Let us consider the following nominal system without uncer-
tainties as:

x̂(k + 1) = Ax̂(k) + Bû(k), (13a)

ŷ(k) = Cx̂(k), (13b)

û(k) = K̂ŷ(k), (13c)

where x̂(k) ∈ �n is the state, ŷ(k) ∈ �m is the output and
û(k) ∈ �l is the control input. K̂ is the output feedback gain
derived by the LMI approach [8] for the nominal system (13).
For the nominal system (13) and cost function (3), it is known
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that the guaranteed cost of the nominal system Ĵ∗ is smaller
than that of uncertain system J∗ [8].

The NN in the proposed system should be trained in real–time
so that the norm of the output discrepancy between the behavior
of the nominal system and the uncertain discrete–time system∣∣∣∣ŷ(k + 1) − y(k + 1)

∣∣∣∣ becomes as small as possible at each
step k. An energy function E(k) is defined as the discrepancy.
At each step, the weight coefficients are modified so as to min-
imize E(k) given as

E(k) � (ŷ(k+1) − y(k+1))T (ŷ(k+1) − y(k+1)). (14)

If E(k) can be minimized as small as possible, the norm of the

discrepancy
∣∣∣∣ŷ(k + 1)− y(k + 1)

∣∣∣∣2 would also be minimized
so that the cost of the uncertain discrete–time system is close
to the cost of the nominal system.

In the learning of NN, the modification of weight coefficient,
∆wij(k), is given as

wij
g (k + 1) = wij

g (k) + ∆wij
g (k), (15a)

∆wij
g (k) = −η

∂E(k)
∂wij

g (k)
, (15b)

∂E(k)
∂wij

g (k)
=

∂E(k)
∂y(k + 1)

∂y(k + 1)
∂x(k + 1)

∂x(k + 1)
∂u(k)

(15c)

× ∂u(k)
∂N(k)

∂N(k)
∂wij

g (k)
,

where η is the learning ratio. The term
∂E(k)

∂y(k+1) ,
∂y(k+1)
∂x(k+1) ,

∂x(k+1)
∂u(k) ,

∂u(k)
∂N(k) can be calculated from the uncertain system

(1) and the energy function (14) as follows:

∂E(k)
∂y(k + 1)

= −
(
ŷ(k + 1) − y(k + 1)

)
,

∂y(k + 1)
∂x(k + 1)

= C,
∂x(k + 1)

∂u(k)
= B,

∂u(k)
∂N(k)

= D2E2Cy(k), (16)

and
∂N(k)
∂wij

g (k)
can be calculated using the chain rule on the NN.

From (14) ∼ (16), NN can be trained so as to decrease the cost
J on–line.
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Fig. 2. Structure of the multilayered neural networks.

B. Multilayered Neural networks

The utilized NN are of a three–layer feed–forward network as
shown in Fig. 2. A linear function is utilized in the neurons of
the input and the hidden layers, and a sigmoid function in the
output layer. Inputs and outputs of each layer can be described
as follows

si
g(k) =

⎧⎪⎪⎨
⎪⎪⎩

Ui(k) {g = 1(input layer)},∑
w

(i,j)
1 (k)oj

1(k) {g = 2(hidden layer)},∑
w

(i,j)
2 (k)oj

2(k) {g = 3(output layer)},

oi
g(k) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

si
1(k) {g = 1(input layer)},

si
2(k) + θ

(i)
1 (k) {g = 2(hidden layer)},

1 − e(−si
3(k)+θ

(i)
2 (k))

1 + e(−si
3(k)+θ

(i)
2 (k))

{g = 3(output layer)},

where si
g(k) and oi

g(k) are the input and output of neuron i in
the g–th layer at step k, wi,j

g (k) indicates the weight coefficient
from neuron j in the g–th layer to neuron i in the (g + 1)–th

layer, Ui(k) is the input of NN, θ(i)
g (k) is a positive constant for

the threshold of neuron i in the (g+1)–th layer. As the additive
gain perturbations defined in the formula (2), the outputs of NN
are set in the range of [−1.0, 1.0].

IV. NUMERICAL EXAMPLE

In this section, the effectiveness of the proposed method is
verified on the discrete–time uncertain system given by



TABLE I

A comparison of the cost in each condition.

The cost of the nominal system Ĵ = 91.0684
F (k) Learning ratio η With NN Without NN
1 0.5 119.2710 138.0183
exp(−0.5k) 0.2 116.5204 122.7675
cos(0.5πk) 0.05 115.0893 116.6713

A =
[

0 1
1 0

]
, B =

[
1
2

]
, C =

[
1 0

]
,

D1 =
[

2
2

]
, E1 =

[
0.2 0

]
, D2 = 0.15,

E2 = 1, F (k) = exp(−0.5k), N(k) = N1(k)

where N1(k) is the outputs of NN. The initial system condition
is x(0) = [5 5]T , and the weighting matrices are chosen as
Q = diag(1, 2) and R = 1, respectively.

The output feedback control gain K based on the proposed
LMI design method with a neurocontroller is given by

K = −0.5036. (17)
For the nominal system (13), the output feedback control gain
K̂ based on the LMI design method in [8] is given by:

K̂ = −0.4794. (18)
For the system without the proposed neurocontroller, that is

N(k) ≡ 0, the control input of the uncertain system is de-
scribed as

u(k) = K̄y(k), (19)
where the output feedback control gain K̄ is designed based on
the LMI approach [8, 12] as

K̄ = −0.4644. (20)
The neurocontroller is composed of 30 neurons in the hidden

layer, and one neurons in the input and the output layers, re-
spectively. The output variables are used as the NN’ inputs and
the learning ratio η = 0.2. The initial weights are randomly set
in the range of [−0.05, 0.05].

The cost J with the gain matrix K is 116.5204, while the cost
without the neurocontroller J̄ with K̄ is 122.7675. Then, The
cost of the nominal system Ĵ is 91.0684. Various uncertain sys-
tems were examined by changing F (k). Table I shows that the
cost of the proposed system is smaller than that of the system
without the neurocontroller in all cases.

The simulation results (F (k) = exp(−0.5k)) are shown in
Fig. 3. The response of the proposed neurocontroller is sta-
bilized faster than that without the neurocontroller (Fig. 3
(a)∼(c)). Fig. 3(d) shows the output feedback gain with the
additive gain K + K̃, i.e., K + D2N(k)E2. The response of
the proposed one is also stabilized faster than that of the con-
troller without one. The proposed neurocontroller could reduce
the cost and compensate for the uncertainties of the system.

Thus, K + K̃ changes so that the response of uncertain sys-
tem can be close to the one of nominal system, and reduction
of the cost performance can be attained for uncertain system.
Therefore, the energy function E(k) is adequate for the learn-
ing algorithm.

V. CONCLUSIONS

The application of neural networks to the output guaranteed
cost control problem of the discrete–time uncertain system has
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Fig. 3. Simulation results by using the neurocontroller (F = exp(−0.5k)).
(a), (b) State variables. (c) Control input. (d) Output feedback gain with addi-
tive gain.

been investigated. Using the LMI technique, the class of the
output feedback gain for the uncertain system has been derived.
Substituting the neurocontroller into the gain perturbations, the
robust stability of the closed–loop system is guaranteed even
if the systems include NN. Furthermore, by combining linear
controllers and NN, the reduction of the cost is attained. Simu-
lation results have shown that the NN have succeeded in reduc-
ing the large cost caused by the LMI.
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