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1. INTRODUCTION

A medical doctor needs to judge patient’s conditions from
biological signals such as electrocardiogram and blood pressure
during operations quickly and properly. Since these biological
signals include blood circulation information, the observation
of patient’s conditions through temporal changes of waveform
is possible [1]. However, special knowledge for blood circu-
lation and considerable experiences are necessary to notice
subtle changes in the waveform, so it is very difficult for
inexperienced doctors to judge the vascular conditions properly.
Also, the doctors may be put a considerable mental strain when
it is necessary for the patient’s vital signs to be controlled for a
long period of time, such as surgical operations. If a diagnosis
support system on vascular conditions becomes available, the
medical staff will be able to identify patient’s conditions more
easily.

The development of a diagnosis support system based on
vascular conditions has not been reported so far, although a few
similar studies on the estimation system of vascular aging have
been reported [2],[3]. For example, Takada et al. examined the
correlation between waveform of accelerated plethysmogram
and aging by statistical procedure, and estimated the vascular
aging [2]. However, the estimated age was not based on
quantitative vascular characteristics. It is impossible to monitor
the patient’s conditions during operations using previously
proposed methods.

On the other hand, vascular contraction or relaxation is con-
trolled by smooth muscle cells in an arterial wall. Some studies
used mechanical impedance to describe dynamic characteristics
of biological systems quantitatively. Mechanical impedance
consisting of stiffness, viscosity, and inertia, has been used
to model mechanical characteristics of muscles in previous
studies. Mussa lvaldi er al. pioneered the measurement of

human hand stiffness, and examined the hand stiffness in a
stable arm posture {4]. Tsuji et al. estimated not only hand
stiffness but also viscosity and inertia, and investigated human
impedance under various conditions on muscle contraction
levels, arm postures and motion directions [5}, [6].

Some studies which modeled dynamic characteristics of
arterial wall by using mechanical impedance have been also
reported [71,[8]. Mascaro and Asada et al. estimated the
impedance properties of the arterial wall from the velocity of
blood flow and the arterial caliber, but did not discuss its valid-
ity and accuracy [7]. Saeki et al. estimated compliance of the
arterial wall only by using a plethysmogram and blood pressure
measurements [8]. We had proposed a method to express the
dynamic characteristics of the arterial wall using mechanical
impedance by applying a muscle impedance estimation method
[51, and estimated the arterial wall impedance during operations
[9]. Also, we have succeeded to discriminate the vascular
conditions by using the estimated impedance parameters [10].
However, the discrimination result only showed one of two
conditions as “Normal” and *Vasoconstriction,” and the result
was not enough to judge the vascular conditions in spite of the
off-line discrimination of the vascular conditions. Accordingly,
this off-line estimation method can not be applied to the actual
surgical operation.

As the first step to diagnose the vascular conditions on-
line, this paper aims to discriminate vascular conditions from
changes of biological signals and arterial wall impedance using
a probabilistic neural network, and apply it to monitor the
vascular conditions toward developing an on-line diagnosis
support system. In this paper, section 2 explains the discrimina-
tion method of vascular conditions and introduces the summary
of the proposed system. In section 3, the experimental results
are shown, and conclusions are given in section 4.
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2. VASCULAR CONDITIONS DIAGNOSIS SUPPORT
SYSTEM

A structure of the proposed diagnosis support system is
shown in Fig.l. In the proposed system, we used Log-
Linearized Gaussian Mixture Network (LLGMN) {11], based
on a log-linear model and a Gaussian mixture model for dis-
crimination. The methods of preprocessing and discriminating
vascular conditions are described below.

2.]1. Preprocessing

For extracting features including biological signals, we es-
timated the arterial wall impedance [9]. Fig. 2 illustrates the
proposed impedance model of the arterial wall. This model
represents only the characteristics of the arterial wall in the
arbitrary radius direction. The impedance characteristic can be
described using an external force and a displacement of the
radius of arterial wall as follows:

F(t) = M#(t) + Br(t) + K(r(t) — r¢) nH
where F'(t) is the force exerted on the arterial wall by blood
flow; M, B, and K are the inertia, viscosity, and stiffness;
r{t), 7(t), and #(t) are the position, velocity, and acceleration
of the wall; and r. denotes the equilibrium vascular radius
when blood pressure is zero. The vascular dynamic character-
istic at the time ¢ can be derived as follows:

dF(t) = Mdi(t) + Bdi(t) + Kdr(t) @

where dr{t) = r(t) — r{to);dri(t) = 7{t) — #{ts);dF(t) =
F(t) — #(to); dF(t) = F(t) — F(io); and ¢o denotes the start
time just at moving arterial walls.

To estimate the impedance parameters given in (2), it is
necessary to measure F'(¢) and r(t). Assuming that the force
F(t) is proportional to blood pressure Py(t), the following
equation can be obtained:

Ft)= kab{t) 3

where ky is a proportional constant [9].

A diagnosis support system on vascular conditions

An arterial wall

Fig. 2. An arterial wall impedance model

On the other hand, the vascular radius r(f} is quite difficult to
measure directly. So, in this paper, a plethysmogram is utilized
instead of r(t).

Let Iy denote the intensity of incident light on a blood vessel
with diameter D, and Ip means the intensity of light transmit-
ted through the apex of the finger. According to Lambert-Beer’s
law [12], the following equation can be obtained: - .

Ap = log(IQ/ID) =ECD C)]

where Ap is the optical density that is proportional to the
concentration of absorptive substance C and the diameter of
a blood vessel D. E is the peculiar absorptive constant for
each material. If the case that the caliber of a blood vessel
D changes D + AD(t) and the light transmitted through the
apex of the finger becomes Ip — AI(f), the variation of optical
density AA(t) can be given by

AA(t) = A(t) - Ap

log(Ip/(Ip — AI(t))) = ECAD(t). (5)

The variation of optical density AA(t) is defined as the
plethysmogram P, (t).

The value of plethysmogram changes proportional to the
pulsation of blood vessels. In this paper, it is assumed that
vascular radius r,(t) is proportional to the plethysmogram:

I
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ru{t) = f‘%ﬁ.‘é’i 6)
3
where k,, is a proportional constant.

The force exerted on the arterial wall is expressed by the
arterial pressure P,(t) given by (3), and the vascular radius
r,(t} is represented by the plethysmogram Py(t) in (6). Then,
the arterial wall impedance is estimated by using F5(t) and
Pi(t) as follows:

dPy(t) = MdPy(t) + BdPy(t) + KdP(t) M

where dPy(t) = Py(t) — Py(to); and dP,(t) = Fi(t) — Pi(to).
The impedance parameters included in (7) are then given by

M . B . K

M= kpkf’B - kpkf - kpkf

where the parameter M corresponds to the mass of the arterial
wall existing in the measured part; B and K to the viscoelastic
properties, respectively [9].

Fig.3 shows an example of the measured electrocardio-
gram (ECG(t)), blood pressure (J BP(t)), and plethysmogram
(PLS(t)). ECG includes P waves (atrial depolarization), Q
waves, R waves, S waves (veatricular depolarization and con-
traction), and T waves (ventricular repolarization) in general
{13]. In the proposed method, the estimation period of the
arterial wall impedance is the time between successive R-
peaks (an RR interval), where the peak of the R wave can be
detected from ECG signals. After determmmg the estimation
period, the impedance parameters M, B, and K are estimated
by substituting dF,(¢) and dP;(t) into (7), where dP,(t) and
dF,(t) are the variations of blood pressure and plethysmogram
from the detecting time of R wave 1g. Because the time needed
for estimating arterial wall impedance is smaller than the RR
interval, it is possible to estimate the arterial wall impedance
“beat-to-beat.”

‘When vascular conditions are discriminated, proportional
coefficients ky and k; included in the impedance model cause
difficulty in discriminating the vascular conditions. To reduce
the effect of these coefficients, an impedance ratio can be used.
The 1mpcdance ratios Mratio, Bratio, and Kiayo are calculated

)

for M, B, and K as follows:
N M - B K
Mratio = Mrest ratio = Tr_e;:, Kratio = Krest )]

where Myesi, Brest, and Kyesy are the nominal values of
impedance ratios when patients are in a relatively rested
condition.

Similarly, the ratios of blood pressure and plethysmogram
are calculated as follows:

IBPgax — IB Puin PLSwmax = PLSmin
IBPrest. PLSrest.

where I B Py, I BPupin, PLSmax, and PLS,;, are maximum
and minimum values of blood pressure and plethysmogram
divided into beat-to-beat; I BP,csy and PLS,cs are maximum
and minimum value differences of blood pressure and plethys-
mogram in a relatively rested condition.

IB Pratio = + PLSratio = (10)
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Fig. 3. Example of the measured electrocardiogram, blood pressure,. and

plethysmogram. The electrocardiogram consists of P waves, Q waves, R waves,
S waves, and T waves in general.

A neural network is used to discriminate the vascular condi-
tions using the normalized ratios of impedance and biological
signals given by

M, Bratio - Kati
Mx{atxo = kt::w th'a.tlo = ;:Btlo) xl-a{:io = ;::!0’

where the gains for normalization, ky, kg, kk, ki, and kp, are
determined by the maximum value of each estimated signal in
advance.

The LLGMN receives the impedance and biological sig-
pals ratios from (11) as characteristics vector x(t) =
[z1(t), z2(t), ---, z(®)]T € RE(L = 5).

2.2. Neural Network Structure

The structure of the LLGMN [11] is shown in Table 1. This
network is of a feedforward type and contains three layers.
First, the input feature vector x(t) is transformed into the mod-
ified input vector X (t) € R¥(H = 1+ L(L + 3)/2) in order
to represent the probability density function corresponding to
each component of the Gaussian Mixture Model (GMM) [14]
as a nonlinear combination of X (£):

X(t) = {L m(t)T3 xl(t)Zw ml(i)xZ(t)y s
o1 ()zL(t), z2(t)?, za2(D)xs(t),
Ty $2(t)£L‘L(t), Tty mL(t)2]T
The first layer consists of H units corresponding to the
dimension of X (t), and the identity function is used for
activation of each unit.

The second layer consists of the same number of units as
the total component number of the GMM. Each unit receives

a2
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TABLE I

STRUCTURE OF THE LLGMN.
The 1t layer[Number of unitg H
Input Xo(t)
Output “O.(t)
1/0 function Identity function
The 2nd layver] Number of unitg 3. M,
put | ™1, 0w
Output Dt
1/O tunction | Generdized sgmoid function
The 3rd layeriNumber of unitg K - ‘
Input “1, 3, "0 (1)
Ouput | “oy(t)
/O function | Identity function

Weight coefficientsfrom 1st layer to2ndlayer |  wi"
Weight coeffidients from 2nd layer to 3nd layer 1

the output of the first layer weighted by the coefficient wgk’m}

and outputs the posteriori probability of each component. The
input to the unit {k,m} in the second layer, P I ,.(t), and
the output POy, ,,(t) are defined as

H

D Lem(®) = Y O0n ™
h=1

eXP[(z)Ik,m(tn
K My .

3 3 el (1)
ki=1m’/=1

where (10, (t) denotes the output of the h-th unit in the first
layer, and w("™*) =0 (h =1,2,---, H). It should be noted
that (14) can be considered as a kind of the generalized sigmoid
functions.

Finally, the third layer consists of K units corresponding to
the number of classes, and outputs the posteriori probability of
the class k (k = 1,2, - -, K). The unit k integrates the outputs
of My units {k,m} (m = 1,2,---, M;) in the second layer,
The relationship between the input and the output is defined
as

(13)

@0k m(t) - (14)

Afy

On@ = > DOkm@) (15)
m=1

@0ty = OL() (16)

In the LLGMN defined above, the a posteriori probability
of each class is defined as outputs of the last layer. Note that
the log-linearized Gaussian mixture structure is incorporated
into the network by learning the weight coefficients w,(f’m)
[11].

Next, let us consider the supervised learning with the teacher
vector T'(n) = [T1(n), Ta(n), ---, Tk (n)]T for the nth input
vector &(n). When the teacher provides perfect classification,

g A [V E— | . Shock
‘ é’ [\ = I .Nomd
2 " - = = 1. Vasocongtriction
£ § —==- V. Vasodilation
T i
1
i

—_—
Ml
.
—
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Fig. 4. Biological signals and vascular conditions.

TABLE I
VASODILATION AND SHOCK CONDITIONS.

..........................................................................

Ti{n) = 1 for the particular class k and T (n) = 0 for all the
other classes. As an energy function for the network, we use

N K
:_ZZTk(n)logOk(n) ’

n=1 k=1

and the learning is performed to minimize J {11}, that is, to
maximize the likelihood.

)

2.3. Discrimination Rule

When vascular conditions are discriminated by the NN, any
misclassification may have a critical effect on patients. To
prevent such a misclassification, a coefficient of determination
is used to judge whether the discrimination is able to be
performed. The coefficient of determination indicates how the
model can adequately describe vascular characteristics [9].

First, the coefficient of determination is calculated from
the measured arterial pressure and estimated arterial pressure
using (7). Next, the coefficient of determination R? and the
threshold R2 are compared to suspend the discrimination based
on the coefficient of determination. For example, if R%> R2, the
discriminated result is selected as vascular condition. On the
other hand, the discrimination should be suspended if R><R2.
Thus, possible misclassifications are expected to be reduced.

2.4. Vascular Conditions

In this paper, we defined the four vascular conditions (K ==
4): i.e., 1) normal, 2) vasoconstriction, 3) vasodilation, and 4)
shock which are shown in a Lissajous figure (Fig.4) [8]. The
vertical axis represents the blood pressure, and the horizontal
axis indicates the plethysmogram. The doctors can judge the
patient’s vascular conditions from each waveform [8]. The
vascular conditions for discrimination are defined as follows:
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Fig. 5. Classification results of the vascular conditions during surgical operations in off-line and on-line processing.

I. Shock A condition due to inadequate blood supply to
tissues which is life-threatening.

II. Nermal Good blood circulation.

1. Vasoconstriction It decreases the diameter of the vessel
lumen to allow less blood through. This is caused by
the dilation or contraction of the smooth muscle in
the vessel walls, particularly in the arterioles.

IV. Vasodilation It is the process by which blood vessels
are dilated in the extremities (arms and legs), allowing
a greater volume of blood to flow to these tissues (It
is the exact opposite to the Vasoconstriction).

3. DISCRIMINATION EXPERIMENT
3.1. Experimental Condition

The proposed method is applied to discriminate the vascular
conditions. The subjects were operated on using the endoscopic
transthoracic sympathectomy for hyperhidrosis (Patient A and
B). If a blood vessel contracts due to stimulation from sym-~
pathetic nerves, the palms and armpits will perspire. In this
operation, the sympathetic nerves on the sides of the backbone
are interrupted using a clip to stop the perspiration [16].
After that, strong stimulations are not given normally. When
the sympathetic nerve is interrupted, a blood vessel becomes
compliant on the spot. Therefore, if the vascular conditions can
be identified on-line, it is possible to ascertain its success or
failure during operation.

Electrocardiogram (ECG(t)), arterial pressure (F5(£)), and
plethysmogram (F;(t)) were measured at 125 [Hz] simulta-
neously for discriminating vascular conditions. The arterial

pressure was measured through a catheter (24 gauge) placed
in the left radial artery, and the plethysmogram was measured
with the ipsilateral forefinger (BSS-9800, NTHON KOHDEN
Co., Lid).

In this study, we wanted to discriminate the vascular condi-
tions on-line, and validate their availability during operations.
However, at the present time, it is almost impossible to
apply the proposed method during actual operations because
of ethical problems. Therefore, we constructed the on-line
discrimination environment in LabVIEW (National Instruments
Co., Ltd), and verified the classification possibility on-line
by estimating vascular conditions from the measured data in
advance “beat-to-beat.”

The learning data was created from that of the four patients
(non-subjects) who operated the endoscopic transthoracic sym-
pathectomy for hyperhidrosis patients. However, the learning
data of the “Vasodilation” and "Shock” conditions were not
available from the patients. Such unobservable facts were
represented randomly by normal distribution with N{u, 0.005).
The means p of “Vasodilation” and “Shock™ conditions are
shown in Table IL

3.2. Experimental Results

Fig.5 shows the result of discrimination experiments. Time
profiles of the ratio of blood pressure, the ratio of plethys-
mogram, the ratio of inertia, the ratio of viscosity, the ratio
of stiffness, the shock index (SI), the classification results (off-
line and on-line), and coefficient of determination are shown in
order from the top. The shock index was used for comparing to
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the “Shock™ condition discriminated by the proposed method
based on the vascular conditions. This index is calculated from
the ratio of heart rate to systolic arterial pressure; “Normal”
condition at 0.6; while “Shock™ condition over 1.0 {17].

The blood vessels become stiff in the shaded areas. The
nominal values of impedance and biological signals are an
average of consecutive 10 sample data after the patients are
under anesthesia. The discrimination threshold of vascular
conditions is settled at R?i = 0.9, and the discrimination is
suspended when the coefficient of determination RZ is less
than 0.9. Also, the normalization gains included in (11) are set
as follows: ky = kp = ki = 30.0,k; = 2.5, kp = 2.0,

In Fig.5(a), the estimated impedance shows that the blood
vessels gradually became stiff because the doctor stimulated
the patient’s tissues to find the sympathetic nerves at 200
~1000 [sec], and NN discriminated the vascular condition
as “Vasoconstriction”. After 1000 [sec], the blood vessels
became compliant, and vascular condition was discriminated
as “Normal”. After that, the ratios of blood pressure and
plethysmogram gradually decreased, the vascular condition was
discriminated as “Shock™, and the corresponding shock index
was indicated as equal or greater than 1.0 at the same time.
Also, when the effect of the anesthesia wore off after 3500[sec]
and blood vessels became stiff, the vascular condition was
discriminated as “Vasoconstriction”. By using the ratios of
arterial wall impedance and biological signals, the vascular
conditions with operative techniques can be discriminated well.

In the result of Fig.5(b), the patient B was stimulated
around 500~1000 [sec], and the effect of anesthesia wore
off after 3300 {sec], where the NN discriminated the vascular
condition as “Vasoconstriction” adequately. In this figure, the
discrirnination results were influenced by external factors when
the anesthesia wore off. In the future research, it should
be considered how to determine the threshold level of the
coefficient of determination. Although in each patient, similar
discrimination results were observed both on and off-line, and
the usefulness of the proposed method was validated because
the vascular conditions could be discriminated.

4. CONCLUSION

This paper proposed a new method to discriminate the
vascular conditions by using a probabilistic neural network, and
developed the diagnosis support system to judge the patient’s
conditions. The discrimination was applied to the measured
data in the surgical operations, and the vascular conditions
could be discriminated with high accuracy using the proposed
method. Furthermore, it was revealed that the discrimination
results on-line were similar to the discrimination results off-
line.

Future research will be directed to measure the biological
signals and discriminate the vascular conditions on-line. Also,
for the application to surgical operations, the development of
easy-to-use interface for doctors is necessary.
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