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ABSTRACT

An impedance control method is one of the most effective
frameworks to control the interaction between a manipulator and
an environment. However, under the conventional method, the
manipulator cannot be controlled until the end-effector makes
contact with the external environment. For such the problem, a
non-contact impedance control has been proposed. This method
can regulate not only the end-point impedance but also the vir-
tual impedance that works between the manipulator and the

environment by using the visual information. The present pa- .

per proposes a method using neural networks to regulate the
virtual impedance parameters according to a target task. The
validity of the proposed method is verified through the computer
simulations of the catching task.

INTRODUCTION

The impedance control (Hogan, 1987) is one of the most
important frameworks to control the interaction between a
manipulator and an environment. This method can regu-
late response properties of the manipulator against external
disturbances by modifying the mechanical impedance pa-~
rameters, i.e., inertia, viscosity, and stiffness, to the desired
values. However, since no external force is exerted until
the end-effector makes contact with the environment, the
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conventional method is not useful in some cases where no
interaction force between the manipulator and its environ-
ment exists.

Recently, the vision-based control for robot manipula-
tors has been actively exploited, in which the robot is con-
trolled by using the visual information on the task space.
Based on the framework of vision-based control, Castano
and Hutchinson (1994) proposed the visual compliance, but
do not consider its optimization according to the target
task. Also, Tsuji et al. (1999) and Nakabo et al. (1996)
have proposed a concept of the virtual impedance using
the visual information. Especially, Tsuji et al. have de-
veloped a non-contact impedance control method. In this
method, the virtual impedance is considered between the.
end-effector and objects when the objects come into the in-
terior of a virtual sphere set at the tip of the end-effector, so
that the virtual force for motion control of the end-effector
can be generated before contacting with the objects. In
general, however, it is extremely difficult to modify the vir-
tual impedance parameters according to the time-varying
characteristics of objects and environments.

On the other hand, there have been many studies that
apply a neural network (NN) to the force control and the
hybrid control of manipulators (Tokita et. al, 1989)(Tao
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et. al, 1993)(Kiguchi et. al, 1995), and also the impedance
control methods using NN (Gomi et. al, 1993)(Lin et. al,
1997). However, most of such impedance methods regu-
late the impedance parameters depending on the model
uncertainties of the manipulator and the environment or
on the external disturbances through the learning of NN
with the given desired impedance. To the contrary, some
methods using NN try to obtain the suitable impedance
according to the task and the environment. For example,
Asada (1990) showed that the nonlinear viscosity of the
end-effector could be realized by using the NN model as a
force feedback controller. Cohen and Flash (1991) proposed
a method to regulate the end-effector stiffness and viscos-
ity of the manipulator. In this method, however, the NN
cannot regulate an inertia property of the end-effector and
only the contact movements can be learned. Also, Yang
and Asada (1996) proposed a progressive learning method
that can obtain the appropriate impedance parameters by
adjusting the desired velocity trajectory. Then, Tsuji et al.
(1996, 1999) proposed the iterative learning methods using
NNs that can regulate all impedance parameters and the de-
sired end-point trajectory at the same time. However, these
learning methods cannot be applied to the task in which the
end-effector dose not contact with the environment.

In this paper, an on-line learning method using NNs
for the virtual impedance parameters in the non-contact
impedance control is proposed by expanding the previous
methods (Tsuji et al. 1996, 1999). The present method
regulates the virtual impedance through the on-line learn-
ing of NNs with an energy function depending on a given
task. Besides, the relative velocity during free movements
and the interaction force during contact movements can be
adapted for the target task. The validity of the method is
investigated through computer simulations of the catching-
a-ball task by a robotic manipulator.

NON-CONTACT IMPEDANCE CONTROL

Impedance Control
In general, a motion equation of an m-joint manipulator
in the I-dimensional task space can be expressed as

M@0+ h(0,6) =T+ JT(0)Fine, (1)

where § € R™ is the joint angle vector; M(¢) € R™*™ is
the non-singular inertia matrix (hereafter denoted by M);
h{6,8) € R™ is the nonlinear term including the joint torque
due to the centrifugal, Coriolis, gravity and friction forces;
T € R™ is the joint torque vector; Fi,; € R' is the exter-
nal force exerted on the end-effector; J(8) € R*™ is the
Jacobian matrix (hereafter denoted by J).

The desired impedance properties of the end-effector
can be written by

M.dX + BedX + K.dX = Fy, (2)

where M., B., K. € R are the desired inertia, viscosity
and stiffness matrices of the end-effector, respectively; and
dX = X.—- X4 € R is the displacement vector between the
current position of the end-effector X, and the desired one
X,. The impedance control law without an inverse of the
Jacobian matrix is given (Hogan, 1987) by

T=T eﬁ'ecto’% + Teomps (8)
Tefector = JT {Mz(8)[M; ! (~K.dX — B.dX)

+Xg—JO) —[I - Mo (O)M. Y| Fine},  (4)

Teomp = (M1JT M (8)J)T (8, 86), (5)

where M, (8) = (JM~1JT)~! € ! indicates the opera-
tional space kinetic energy matrix which is nonsingular as
far as the joint configuration € is not in a singular posture;
Teffector € R™ in (4) represents the joint torque vector to
realize the desired end-effector impedance; Teomp € R™ in
(5) is the joint torque vector for nonlinear compensation;
h(8,8) and M denote the estimated values of h(f, 0) and
M, respectively; and I € R*! is the unit matrix.

Impedance properties of the end-effector can be regu-
lated by employing the designed controller in (3).

Non-contact Impedance Control

Figure 1 shows a schematic representation of the non-
contact impedance control (Tsuji et. al, 1996, 1999). Let us
consider the case that an object approaches a manipulator,
and set a virtual sphere with radius r at the center of the
end-effector. When the object comes into the interior of
the virtual sphere, the normal vector from the surface of
the sphere to the object dX, € ®' is defined by

dX, =X, —rn, (6)

where X, = X, — X, is the displacement vector from the
center of the sphere X, € R (namely, the end-point posi-
tion) to one of the object X, € R%; and the vector n € R
is given by

_ & (X1#0
= {5 il @



Vinual sphere

Figure 1. Schematic representation of a non-contact impedance control

The virtual impedance works between the end-effector and
the object when the object is in the virtual sphere (| X, | <
). At that time, the virtual external force exerted on the
end-effector F, € R is given by

7 = { ModX, + BodX, + KodX, (1X,| <) (8)
¢ 0 (1Xe] 2 7) ’

where M,, B, and K, € R represent the virtual inertia,
viscosity and stiffness matrices, respectively. F, becomes
zero when the object is not in the virtual sphere or when
the object is at the center of the sphere. Then, the dynamic
equation of the end-effector in the non-contact impedance
control can be obtained from (2) as

M.dX + BedX + KodX = Fint + Fo. 9

Figure 2 shows a block diagram of the non-contact
impedance control using (7) and (8). The response of the
end-effector position X.(s) with respect to the object posi-
tion X,(s) and the desired end-effector position Xy(s) can
be derived as

Xo(s) = %’%Xo(s) 4 %e(%’-xd@ N MRO(S);ZS Fine(s)
(10)

where M = M, + M,, B = B, + B, K = K, + K., R(s) =
Ms?+ Bs+ K, Ry(s) = M,s® + Bos+ Ko, Re(s) = Mes® +
B.s+K,, respectively. Therefore, the system is stable under
M, > ~-M,, B, > —-B,, K, > ~K,., where all equal signs
in these conditions do never establish at the same time.

In the non-contact impedance control method, the end-
effector impedance is modified according to a task as same
as the conventional method, while the virtual impedance

Figure 3. Virtual impedance composed of three components

between the end-effector and the object is regulated for con-
trolling the relative movements. In the present paper, the
virtual impedance parameters M, B,, K, are regulated to
the appropriate values for the given task through the learn-
ing of NNs.

ON-—LINE LEARNING OF VIRTUAL IMPEDANCE BY NNS

Structure of Control System

The proposed control system is constructed by exchang-
ing the virtual impedance part in Fig. 2 for the composition
with three multi-layer NNs as shown in Fig. 3; a virtual
stiffness network (VSN) at K,, a virtual viscosity network
(VVN) at B,, and a virtual inertia network (VIN) at M,.
Inputs of the NNs are the relative movements between end-
effector and object (X,, X, and X,) and the interaction
force Fin:, while each of the NNs outputs the correspond-
ing impedance parameter: K, from the VSN, B, from the
VBN, and M, from the VIN, respectively.

The NNs utilize a linear function in the input units and
a sigmoid function in the hidden and output units as follows:

o I,  (input layer) (11)
Ti= > wiys (middle and output layers)’
z; (input layer)
i = 1—;‘-.».;-_ , (middle layer) (12)

%(ﬁff?m) (output layer)

where z; and y; are the input and the output of i-th layer;
w;; indicates the weight coefficient from the unit j to 5 U
and @ are positive constants for the maximum output and
the threshold of NN, respectively.



Leaming Rule of NNs

The learning of NNs is progressed by means of an energy
function E(t) according to a given task, and the synaptic
weights w;; in the NNs are modified in the direction of the
_gradient descent so as to minimize E(t) at each interval time
by the weight modification Aw;; as .

9B
Awijw ?’[*—'“""‘awij N {13)
DE(t)  OE(t) 0F,.(t)90(t)
Bwy  OF,.(t) 80(t) Bwy '~

(14)

where 7 is the learning rate; Fac () is the control input;
and O(t) € R™! indicates the output of NNs. The term
%’%2 can be computed from Fig. 2 and (7), while %g-
can be obtained by the error back propagation learning.
In the present learning method, the partial differentiation
5%%%5 “in (14) is approximated by the finite variations so
that the on-line calculation of Aw;; can be carried out by
using the changes of E(¢) with respect to the slight variation
of F, act (t)«

As designing the energy function E(t) with the end-
point position X(t) and the velocity X.(t), the term g‘i :zt}
can be expanded from Fig. 2 as

OE(t) 8X.(t)
8X,(t) OF act(t)’

BE() _ OE(t) 8X.(t)

OFpet(t)  0Xc(t) OFoe(t) (15)

Then, the slight change of the control input AF,.¢(t) yields
the following approximations as

AX(t) = AF ()AL, (16)
AXe(t) e AFact (t)Atsa {17)

where At, is the sampling interval. Thus, ————ai.iit&) and

5%—{&% can be expressed (Tsuji et. al, 1999) as follows:
0X(t)  AX(t) _ ..o ‘
BFn() ~ AFuay ~ oL U8
0X(t)  AX(t) — At (19)

OFet(t)  AF,u(t)

On-line learning of the virtual impedance can be carried
out with the derived learning rules (13) ~ (19) under the
stable conditions on the non-contact impedance control; i.e.,
M, > —-M,, B, > —B,, and K, > —K..

@ (b)

Figure 4. An example of a catching task

APPLICATION TO CONTACT TASKS

A catching-a-ball task is examined as an example of
contact tasks by a robotic manipulator, in which the end-
effector of the manipulator contacts with an approaching
ball and tries to control relative movements as smooth as
possible in order to catch the ball.” A series of computer
simulations was carried out to investigate the effectiveness
of the on-line learning of virtual impedance parameters.

Catching-a-ball Task ]

Figure 4 shows the catching task by the manipulator
with one degree-of-freedom (I = 1), in which a ball is hung
from the ceiling at Xy = [0.5,2.1] [m] by a pendulum with
length L = 2.1 [m]. The ball is expressed with a viscoelastic
model as shown in Fig. 4 (b), and its properties are set
as B, = 70 [Ns/m], K, = 2000 [N/m] with weight M, =
0.6 [kg] and radius R, = 0.0322 [m]. Also, the impedance
parameters of the end-effector are set as M, = 25 kg, B, =
200 [Ns/m], K. = 400 {N/m]. The initial position and the
target position of the end-effector, X.(0) and Xg4, are set at
the origin of the task space, while the initial angle of the
pendulum at 8y = —7 /8 [rad].

In the target task, the virtual impedance works between
the end-effector and the ball when the ball comes into the
interior ‘of the virtual sphere with radius r = 0.2 {m]. The
virtual interaction force Fj,; is calculated with the relative
position X, between the end-effector and the ball by

[ BydXy + Kid Xy (|X-| < Re)
ant - { 0 b (le‘i > R:) 3 (20)

where dX, = X, — Rpn; and X, represents the vector from
the end-effector to the center of the ball.

The manipulator should be controlled to avoid exert-
ing a large interaction force on its end-effector and the ball
without overshooting. For that, it can be suggested not
only controlling the end-point force after contacts with the
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ball but also reducing the relative velocity between the end-
effector and the approaching ball beforehand. Accordingly,
an energy function for the learning of NNs can be designed
as

B@)=Eu() +nEy(t), (21)
()= (X0 Xot) - o0, (22
Bi(t)=5 [ (Futu) = Fclu)’du,  (25)

where ¢; denotes the contact time just when the ball con-
tacts with the virtual sphere; Fy indicates the desired inter-
action force; and a(X,) is the time-varying gain function to
smooth the changes of velocity immediately after the ball
enters the virtual sphere defined by ’

sin Er=Redm (1 | > Ry)
= (r=Rs) rh= ")

The on-line learning needs the partial differential com-
putations in (14) by every sampling interval. In the target
task, the term -5%);5 in (14) can be derived by means of
(18) and (19) with the energy function in (21) ~ (23) as
follows: . ,

BE(t) _ BE.(t)

OEx(t)
aFaCt(t) B 6'Fa.ct(t) uBFact(t)’ (25)
OE,(t) OFE,(t)
OFact(t) S OX(E)’ (26)
OEf(t) . 20FEf(t) BE;(t)
Tomo R ar r > an e

The learning of the NNs for the target task is carried out
with the above approximations.

Computer Simulations

In the computer experiments, the VSN, VVN and VIN
were of four layered networks with four input units, two
hidden layers with twenty-five units and one output unit;
the initial values of the synaptic weights wy; were randomly
chosen under |w;;] < 0.05; the learning rates of the NNs
were 7, = 0.1 for VSN, 7, = 1.0 for VVN, and 5, = 1.0™*
for VIN, respectively; the sigmoid functions in the output
units were adjusted in such a way that output values of
the NNs were within -1000 ~ 1000, that is, U = 2000 in
(12); the synaptic weights were modified five times in every
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Figure 5. Simulation results of the catching-a-ball task

sampling interval; and the constant u of E(t) in (21) was
set at g = 1.0 X 1073,

Figure 5 shows the simulation results with and without
real-time learning under the desired interaction force Fgq = 2
[N]. The figure {a) shows the trajectories of the end-effector
(a solid line) and the ball (a broken line), while the figure
(b) and (c) show the time histories of the interaction forces
without and with on:line learning, respectively. It can be
observed from Fig. 5 that the end-effector under the on-
line learning takes avoiding actions before contacts with the
approaching ball in order to catch the ball as smooth as
possible, and that the end-effector force is almost equal to
the desired interaction force after learning.

Finally, the time histories of the virtual impedance pa-
rameters K,, B, and M, during the catching task are shown
in Fig. 6. Both K, and B, increase just after the ball enters
the virtual sphere, so that the manipulator can moderate
the impact force by moving the end-effector toward the op-
posite direction against the moving direction of ball. Then,
K, reduces to a negative value gradually after contacting
the ball, because the end-effector has to move to the pos-
itive z direction more than the initial position to realize
the desired interaction force. In the same way, M, becomes
a negative value to improve the motion ability of the end-
effector with reduction of the equivalent inertia property of
the end-effector M = M, + M, in (10). Note that the sta-
ble conditions M, > — M. and K, > — K, are fulfilled in all
cases.
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Figure 6. Change of the virtual impedance parameters during the catching-
a-ball task

CONCLUSION

The present paper has proposed the on-line learning
method using NNs for regulating the virtual impedance pa-
rameters in the non-contact impedance control. The pro-
posed method can modify the virtual impedance in the de-
sired values by minimizing the energy function according
to the given task by the learning of NNs. The validity
and feasibility of the proposed method have been confirmed
through the computer simulations of the catching task by
the manipulator.

Future research will be directed to apply the proposed
method to more complicated tasks in the multi-dimensional
task space. Also, we plan to investigate a parallel learning
with the impedance parameters of the end-effector.
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