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, Abstract
In this paper, a new recurrent neural network called
a Recurrent Log-Linearized Gaussian Mixture Net-
work {R-LLGMN) is proposed. This network includes

a Hidden Markov Model (HMM) in its structure and

weight coefficients in the network can be learned using
the well-known back-propagation through time algo-
rithm. Then, a pattern discrimination of a time series
of EMG signals is performed. Experimental results
show that the R-LLGMN can successfully classify raw
EMG signals and realize a kind of signal processing
similar to low-pass filtering.

Key Words: Neural network, Gaussian mixture
model, Hidden Markov model, EMG.

1 Introduction

A pattern discrimination for a time series of bioelec-
tric signals such as the electroencephalogram (EEG)
and the electromyogram (EMG) is a key technique,
when varicus signals measured from a human body
are utilized as means of a human-machine interface.
In order to deal with such bioelectric signals effec-
tively, at least the following points should be taken
into account:

1. Since the signals include high frequency com-
ponents, an adequate signal processing such as
low-pass filtering is necessary in order to extract
meaningful information for the human interface.

2. To command an electric device by using a bioelec-
tric signal, a pattern discrimination of the bio-
electric signal is needed to generate appropriate
commands, and the discrimination performance
has to be high. ‘

3. For robust discrimination against the differences

among individuals and the change of environ-

ment, a learning ability should be adopted.
Among many kinds of bioelectric signals, this paper
focuses on the EMG signals. Since the EMG ac-
companied by muscular contraction includes informa-
tion about the muscles contributing to human move-
ments, the EMG is expected as a means of the human-
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machine interface, especially, for prosthetic hands and
arms.

Up to the present, many studies have been reported
on the pattern discrimination problem of EMG signals
using neural networks (NNs) [1]-{13]. Hiraiwa et al.
{1] used the back-propagation neural network (BPN)
for the estimation of five finger motions. They re-
ported that the five finger motions, the joint torque

" and the angles were successfully estimated simultane-

ously. Also, Kelly et ol 2] proposed a pattern dis-
crimination method which combines the BPN and the
Hopfield neural network, and discriminated motions of
forearm from the EMG signal measured by one pair
of electrodes. Tsuji et al. [3][4] used a NN including
a statistical model [3] and the entropy of output sig-
nals-[4] for estimation of forearm motions. Koike and
Kawato [5] used the BPN to construct a forward dy-
namics model of the human arm which maps the EMG
signals to arm trajectories. Farry et al. [6] proposed
a method to remotely operate a robot hand by classi-
fying the motion of human hand from the frequency
spectrum of EMG signals. Huang and Chen [7] con-
structed several feature vectors from the integral of
the EMG, the zero-crossing and the variance of the
EMG, and 8 motions were classified using the BPN.
Nishikawa et al. [8] succeeded to estimate 10 motions
from the EMG signals using the Gabor transformation
and the BPN.

While the BPN is utilized in most of the previ-
ous-studies, Tsuji et al. proposed the log-linearized
Gaussian mixture network (LLGMN) [9] based on a
log-linear model and a Gaussian mixture model. The
LLGMN can acquire the log-linearized Gaussian mix-
ture model through learning and calculate the a pos-
teriori probability. Using the LLGMN incorporated
with a Neural Filter (NF) [10], which is a sort of re-
current neural network, in order to cope with time-
varying characteristics of bioelectric signals, the non-
stationary time sequence of the EMG signals [11]{12]
were successfully discriminated. Then, this method is
used for the EMG based human assisting manipula-
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Fig. 1: The structure of the R-LLGMN

tor system [13]. However, since it was very difficult
to perform the filtering and the discrimination simul-
taneously, conventional methods adopted a sequential
scheme in which two processes were performed inde-
pendently. As a result, since the NN was used for only
the pattern discrimination, optimization of the whole
processing was almost impossible and it was hard to
gain a high performance of discrimination, especially
for non-stationary signals.

In this paper, a novel NN, a Recurrent Log-
Linearized Gaussian Mixture Network (R-LLGMN) is
proposed by introducing recurrent connections into
the LLGMN to classify a time sequence of bioelec-
tric signals. Since this network is composed of a feed-
forward NN including a Gaussian mixture model and
feedback connections from output to input, the filter-
ing process and the pattern discrimination are uni-
fied together and realized in a single network. The R-
LLGMN includes a hidden Markov Model (HMM) [14]
in its structure and can regulate the weight coefficients
based on the learning scheme of the back-propagation
through time (BPTT) algorithm [15]. The R-LLGMN
ensures the filtering process and the pattern discrimi-
nation to be achieved at the same time and can attain
high discrimination ability.

2 Network Structure

- The structure of a proposed network in this paper
is shown in Fig. 1. This network is a five-layer recur-
rent NN with a feedback connection between the 3rd
layer and the 4th layer. First of all, the input vector
x(t) = [z1(t), 22(8), - s za()]T € R = 1,...,T) is
pre-processed with a non-linear computation and con-
verted into the modified vector X € R:

X(t) = [13 x(t)Timl(t)a Iy (t)z2(t)’ Ty
21 ()za(t), 22(8)*, 22 (E)zs(8),

oz (B)Tat), 2T (1)

The first layer consists of H units corresponding to
the dimension of X{the dimension H is determined as
H =1+d(d+ 3)/2) and the identity function is used
for activation of each unit. Each unit in the first layer
is defined as

W14 (t) = Xa(t), @)

WOy (t) = V), (3)

where (U, and (MO, denote the input and the out- -
put, respectively, of the hth unit in the first layer.

Unit{c,k, k' ,m} {c = 1,---,C ; K,k = 1,... K,
;m = 1,...,M. ) in the second layer receives the
output of the first layer weighted by the coefficient
Wiy m.n- Lhe relationship between the input and the
output in the second layer is defined as

H .
(2)I£f,k’m(t) = Z(l)Oh(t)wgf’k’m’h, (4)
h=1

DOf e m® = exp (L g m(®) . (5)

where C is the number of classes, K, is the number of
states, M. is the number of the components of the
Gaussian mixture distribution corresponding to the
class ¢ and the state k [9].

The input into a unit {c,k, &'} in the third layer
integrates the outputs of units {¢,k, k', m} (m =
1,..., M) in the second layer. The output in the
third layer is that input weighted by the previous out-

- put in the fourth layer. The relationship in the third

layer is defined as

Mc.k
(3)Iig"k(t) = Z (2)Oc’,k,m(t)a (6)

ma=1



D0 4(8) = WOp(t - VI, (8), ()

where (0%, (0) = 1.0 for the initial state.

The fourth layer receives the integrated outputs of
units {¢,k,k’} in the third layer. The relationship in
the fourth layer is defined as

K. ‘
Wrg) =" Pog (), (8)
ki=1
Wre(t)
K ; *
ES:1 e WILE)
At last, a unit ¢ in the fifth layer integrates the

outputs of K, units {¢,k} (k = 1,..., K.) in the fourth
layer. The relationship in the fifth layer is defined as

Wogt) = (9

K. )
Ore() = S Wog(t), (10}
k=1
($)10c(2) = OI2(2). (11)

The output of the network #)O°(t) corresponds to
the @ posteriori probability of the input vector x(t) for
the class ¢, while only the weight coefficients wg, ¢ .,
between the first layer and the second layer are ad-
justed by learning. ‘

3 Relation between R-LLGMN and

Hidden Markov Model

This section proves that the R-LLGM can be re-
garded as a NN which introduces a log-linearized
Gaussian mixture model into the HMM [14].

First, let us consider a dynamic model, where there
are C classes in this model and each class ¢ (¢ €
{1,...,C}) is composed of K, states. For the given
time series % = x(1),x(2),---,x(t),---,x(T), where
x(t) € R4, the a posteriors probability for class c,
P(c]x), is derived as [14]

Kc
P(c|x) =Y P(c,k|x), (12)
k=1

" £(T)
Ple ki) = =gt
YO e al(T)

(13)

Kc
af(t) =Y af(t — D pbi(x(®) (¢ > 1),  (14)

kfe=1

ai(1) = mibg (x(1)), (15)

where 7f, , is the probability of the state changing
from k' to k in class ¢, and b{(x(2)) is defined as a
posteriori probability for state k in class ¢ correspond-
ing to x(t). Also the a priori probability 7§ equals to
P (Ca k);z‘.::{)’

When the a posteriori probability of state & in class
¢ corresponding to x(t), b (x(t)), is approximated by
summing up M. components of Gaussian mixture
distribution [9){16], 7§ bi(x(t)) in the right side of
(14) can be derived with the form

e abi(x(t) =

Mc.k
Z 7£',krc,k,mg(x(i); ﬂ(ctkam)} E{C,k,m))

masl

(t>1), (16)

where Tk m, u(&F™ € R? and Tlobm) ¢ Rixd
stands for the mixing proportion, the mean vector and
the covariance matrix of each component {c,k,m},
respectively.  Using the mean vector p(sFm =
(p(lc‘k‘m),. . ,uff’k’m))T and the inverse of the covari-
ance matrix L(OF™-1 = [sg’k’m)), the right side of
(16) can be rewritten as

Yir ke ke m@(X(t); p,(c”'“f""), plekm)y

= YokTekm (27:)"g {):;(cak,m}!‘“i
d

1 j
X exp |~ >3 (2~ 5j¢)s§f‘k*m)xj(t}xg(t)
i=1
, d .
-+ Z Z s§;1kvm)#§cs !m)xl(t)

d 4
1 ,k,m ;ky : ;ky
LSS ek ek ek |17

where 6;; is the Kronecker delta: §;; = 1 when ¢ =
j and &; = 0 when ¢ # j, and | - | stands for the
matrix determinant. Also, z;(t) ({ = 1,2,---,d) is the
element of x{t). Then, taking logarithm of (17), we

get ‘

Mc,i:
Y k05 (x(8)) = Z i kom (), (18)
me1
éi',k,m(t)
2 10g7E e emg(x(2); ploF, TleRm))
= Byam X(t), (19)

where X(t) € R¥ is defined as

X(t) (1,x(t), 21 ()7, 21 (8)z2(8), - - -, 21 (D)2a(t),
'$2(t)27 S{;g’(i)ﬂ?g(t}, Ty .’,Eg(i)l‘d(t),
ez, (20)

and B ;.. € R is the appropriate coefficients vector
[9}.

it



Equation (20) describes the nonlinear pre-process
for the first layer in R-LLGMN (see (1)), and &5 ; .,
can be expressed as the product of the coefficient vec-
tor 3% & . and the modified input vector X € R¥.
Hence, the model can be expressed as the neural net-
work structure by using By , ., as the welght coeffi-
cients.

However, most of elements of B ;. are con-
strained by the statistical properties of the parame-

ter s{c ™) and these constraints may cause a diffi-
cult problem in the learning procedure: how to satisfy
the constraints during the learning of the weight co-
efficients. Therefore the new variable Y , .. and the
new coefficient vector w§, . . are mtroduced to get
rid of the constraints:

y}:’,k,m(t) = §§f,k,m(t) - és’c(c,Kc,Mc,x(t)
¢ C T
= (:Bk',ic,m - ﬂKc.chMc,x) X(®)
= Wi X(0), (21)

where wfc,;ic Ko.Mc.x = 0 by definition.

This new parameter wj, ; .. has no constraints and
is used as the weight coeﬁﬁcxent in this paper. Sub-
sequently, equation (14) can be rewritten in the form
as

ag(t) = }:ak:(t-zm b5 (x(1))
kl—..
Kcl
= 3 ap(t-1)exp [V hm(t)]
k? =1

(t>1). (22)

Comparing (12),(13),(20),(21),(22) in the HMM
with (1)-(11) in the R-LLGMN, we can see that the
R-LLGMN includes the HMM as a special case and
regards the coefficient vector wf, , ., as a weight coef-
ficient vector. Then, the weight coefficients are modi-
fied so as to optimize an energy function via learning
with the BPTT {[15]. In this paper, the log-likelihood
function is used as the energy function [9], and the
terminal learning [17] algorithm is incorporated with
the BPTT.

4 Pattern Discrimination of Raw EMG
Signals

In order to show effectiveness of the proposed NN,
discrimination experiments of time series of the EMG
signals were performed. In the previously proposed
methods for discrimination of the intended motion
of an operator, the smoothed EMG signals [2]{3] or
the extracted characteristics in a fixed time window
[1][7][6] bave been used as the input vector to the
NN. However, these processings result in considerable
phase delay and time delay caused by the low-pass fil-
tering and the time window operation. To avoid such

delay, in this paper, raw EMG signals without any pre-
processing are used as the input to the R-LLGMN.
4.1 Experimental Conditions

Experiments were performed with four subjects (A:
an amputee, B, C, D: normal) who had been expe-
rienced to manipulate the EMG signals. The EMG
signals were measured from 6 electrodes (L=6: four
channels at the forearm, and two at the upper arm)
and 6 forearm and hand motions (C=6 : flexion, ex-
tension, pronation, supination, grasp, hand opening)
were classified in the experiments.

The electrodes (NT-511G, NT-512G: NIHON KO-
HDEN Corp.) for EMG measurements are made of
Ag/AgCl with the diameter 0.012 {m]. Distance be-
tween electrodes was set as 0.03 m. The measured
EMG signals were amplified and filtered out with the
low-pass filter (cut-off frequency, 100[Hz]) in a multi-
telemeter (Web5000: NIHON KOHDEN Corp.) and
digitized by an A/D converter (sampling frequency,
200 [Hz]; and quantization, 12 [bits]) after they were
amplified (70 [dB]). The L channel EMG signals are
denoted by EMG;(s) (i = 1,---,L;8 = 1,--+,8),
where S is the number of all data.

Then, the integral EMG (IEMG) aft) were ob-
tained calculating moving average within the teacher
vector length T of the R-LLGMN after EMG;{3) were
rectified:

EHC, EMGi(s)
@ (23)
I Z; EMG,

EMGi(s) = Z [EMGi(s-3), (24)

where EMG,  is the premeasured IEMG of each
channel under the maximum voluntary contraction
(MVC). Also, it should be noted that EMG;(s—j) =0
when s — j < 0. In this paper, a(t) is used for the
recognition of the beginning and ending of motions:
When aft) is over the motion appearance threshold
o4, the motion is regarded as having occurred.
The input vector x(¢) = [z1(t), z2(t), -+, za(t)]T

(t = 1,...,T) to the R-LLGMN is the normalized
EMG;{(t) with a(t) as

z:i{t) = Q“I(T)EMG,‘(t). (25)

This normalization enables to estimate the motion
from a pattern of all channels as well as the ampli-
tude of the raw EMG signals.
4.2 Discrimination Results

First, discrimination experiments for non-station-
ary time series of EMG signals were carried out. The
subject was an amputee who is a 51 year-old man
whose forearm, 3 ¢cm from the left wrist joint was am-
putated when he was 18 years old by an accident (sub-
ject A). He has never used the EMG controlled hand
and. usually uses a cosmetic hand.
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Figure 2 shows an example of the discrimination
result. In the figure, the EMG signals, the IEMG
a(t), the entropy H(t) calculated from the output
probability of the R-LLGMN, the discrimination re-
sults of the R-LLGMN are shown, while he performed
6 motions (1: open, 2: grasp, 3: flexion, 4: exten-
sion, 5: pronation, 6: supination, 7: discrimination
suspension ), continuously. In the R-LLGMN, the pa-
rameters of the network are set as: K; = K; = 1,
M}); = M2,1 = 1, T = 20, L= 5, ag = 0.155. The
discrimination rate was about 92.3% in this experi-
ments. The output of the R-LLGMN is considerably

smooth and the entropy is low during motions except -

for the motion 1.

Figure 3 shows the signals magnified from 2.2 [s]
to 3.4 [s] in Fig. 2 during the wrist extention motion.
In the figure, the EMG signal of the channel 4, the
smoothed EMG signal which is rectified and filtered
out by the second order Butterworth low-pass filter
(cut-off frequency, 1.0[Hz]), the IEMG af(t), the dis-
crimination results of the BPN, the LLGMN, the R-
LLGMN are shown. The BPN and the LLGMN used
the smoothed EMG signals as the input vector [9],

while the R-LLGMN the raw EMG signals. It can be

seen from the figure that there is a considerable phase
delay between the raw EMG and the filtered EMG sig-
nals, which causes the ill-discrimination in the results
of the BPN and the LLGMN. On the other hand, using
the raw EMG signals, the R-LLGMN achieves a high
discrimination performance comparing to the others.
It should be noted that the discimination rates of the
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Fig. 3: Changes of the discrimination results by three
types of neural netoworks {subject A)

Table 1: Discrimination results for non-stationary
EMG signals

Type of the methods BPN LLGMN | R-LLGMN

SubjectA | CR 70.1 89.3 912
{Amp so 10.8 0.0 1.3
SubjectB | CR 80.5 829 94.1
(Normal) sD 8.1 0.0 0.4
SubjectC | CR 789 88.3 90.4
(Normal) SD 4.1 0.0 0.9
SubjectD | R 758 85.9 91,0
(Normal) sp 4.5 0.0 1.8
R 76.3 86.6 91.8

Totl SD 89 0.0 11

CR : Classification rate [%], SD: Standard deviation {%)

BPN and the LLGMN decreased considerably when
the cut-off frequency of the low-pass filter increased.
The increase of the cut-off frequency results in filtered
EMG signals containing high frequency components,
so that the learning of the NNs becomes very difficult.

Table 3 shows the discrimination results for four
subjects using three different NNs. The mean values
and the standard deviations of the discrimination rates
are computed for 10 kinds of initial weights, which are
randomly chosen. The EMG signals measured during
6 motions in about 18 [s] were used. In the LLGMN,
the number of components were set as M; = My =1,
and the number of training data 50 for each motion.
In the BPN, the first and last layer consists of 6 units,
and the second and third layer consists of 10 units.
Also, the same training data as the LLGMN are used.



From the table, it can be seen that the R-LLGMN
attained the best discrimination rates. Because the
R-LLGMN contains the dynamic statistical model, it
can utilize time history of the EMG signals.

5 Conclusions

In this paper, the new recurrent neural network, the
R-LI.GMN, has been proposed to perform a pattern
discrimination for a time series of bioelectric signals.
The R-LLGMN is a recurrent NN including a Gaus-
sian mixture model and a feedback connection from
output to input. Therefore, this network ensures the
filtering process and the pattern discrimination to be
achieved at the same time.

The  discrimination experiments for the non-
stationary time series of raw EMG signals have been
carried out to examine the discrimination capability of

the proposed network. The results of discrimination.

experiments showed that the R-LLGMN performs the
filtering process as well as the pattern discrimination

together in the same network architecture and can re-

alize a relatively high discrimination rate.

Future research will be directed toward improving
the learning algorithm for the application of the dis-
crimination of various bioelectric signals.
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