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. Abstract

This paper discusses the manipulation of multiple
objects under rolling contacts. For manipulating mul-
tiple objects, there are two key issues which do not
arise in the manipulation of a single object, (1jeach
object’s motion is restricted by the other objects, and
(8)the contact force among objects is not condrolled di-
rectly. As for (1), we first formulate the motion con-
straint for the whole grasp system, and then provide a
necessary condition for manipulating multiple objects
uniquely. As for (2), we provide a condition for deter-
mining the contact forces among objects unigquely. We
further show o sufficient condition for manipulating
multiple objects within the object motion constraint.
Under this sufficient condition, we propose o control
scheme for object motion by taking the motion con-
straint into account. An ezperimental result is provid-
ed to confirm our idea.

1 Introduction :
Maultifingered robot hands have potential advan-
tages in performing various tasks with the dexterity
of human hands. While much research has been done
on multifingered robot hands, most of works have im-
plicitly assumed that a multifingered hand manipu-
lates only one object. Under such a condition, several
grasping issues have been studied. = ‘
Let us now consider the case where a multi-fingered

hand approaches and envelopes two cylindrical ob-

jects with significant friction[g} as shown in Fig.1. For
two objects satisfying the rolling contact each other,
we can expect that a multifingered hand can easily
achieve an enveloping grasp by simply pushing two
links contacting with the objects. During the lifting
phase, links and two objects behave as if they were just
connected by mechanical gears. Due to this mechan-
ical properties, achieving an enveloping grasp for two
objects seems to be even easier than for a single object
under significant friction. This is a potential advan-
tage for manipulating two objects, simultaneously.
We can find another advantage for manipulating
multiple objects. Let us consider the case where a
human picks up and transfers small objects such as
coins, beans or such like from a table. In such a case,
a human often grasps more than one object and ma-
nipulate them case by case. Generally, we can expect
that treating multiple objects simultaneously makes it
possible to achieve a handling task efficiently. These

Fig. 1: Enveloping two objects by rolling contacts

are motivations to start this work.

By observing a series of motions shown in Fig.1, we
can roughly divide the grasp into two types. Fig.1(b)
shows a kind of inner-link based grasp where one finger
contacts with an object only at the end link. Although
many fingers are needed to grasp objects firmly, wecan
expect that the freedom of manipulation will increase
since a finger can exert an arbitrary contact force at
the contact point. On the other hand, Fig.1(c) shows
the final state of the grasp where one finger contacts
with an object at multiple points. In such a grasp,
although a robot hand can grasp objects firmly with
a small number of fingers, the freedom to manipulate
the objects is strongly limited since a finger cannot
exert an arbitrary contact force at the contact points.
Due to the large potentiality of object manipulation

‘with the end link, we focus on the grasp style as shown

in Fig.1(b).

When multiple objects are manipulated simultane-
ously by rolling contact at each contact point, we have
to take note of two factors. One is the object motion
constraint. For the manipulation of two objects as
shown in Fig.1(b), even if the left-hand object moves
in an arbitrary direction, the right-hand object has to
maintain the contact with the lefi-hand object and,
therefore, cannot move arbitrarily. The other factor is
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the dependency of contact force. Suppose that each
finger exerts contact force onto the objects, as shown
in Fig.1(b). Even if an arbitrary force (f, and f,) is
exerted at the contact point between the finger link
and the object, the contact force (f,) at the contact
point between the two objects depends on both f,
and f,. Therefore, we have to consider the dependen-
cy of the contact force as well as the constraint on the
object motion when manipulating multiple objects.
In this paper, we discuss the manipulation of multi-
ple objects under rolling contacts by taking the above
two issues into account. As for the discussion of the
object motion constraint, we first formulate the mo-
tion constraint of the grasp, and show a necessary con-
dition for manipulating multiple objects uniquely. As
for the dependency of the contact force, we formulate
the equation for computing the contact force among
objects for a given set of finger forces by consider-
ing the dynamics of the system, and provide a condi-
tion for determining the contact force among objects
uniquely. Under the condition for generating unique
contact force among objects, we show a sufficient con-
dition which ensures that each object can generate an
arbitrary linear and rotational acceleration under the
object motion constraint. Under the unique contact
force among objects and the motion constraint caused
by multiple contacts, we show a control scheme for the
manipulation of multiple objects. Trajectory tracking
of the object motion is experimentally performed by
using a three-fingered hand to verify our idea. We be-
lieve that this experiment is the first attempt at mak-
ing multiple objects follow along desired trajectories.

2 Relevant Work

Dauchez et al.[10] and Kosuge et al.[{11] used two
manipulators holding two objects independently and
tried to apply to an assembly task. Aiyama et al.[12]
studied a scheme for grasping multiple box type ob-
jects stably by using two manipulators. For an assem-
bly task, Mattikalli et al.[13] proposed a method to
find a stable alignments of multiple objects under the
gravitational field. While these works treated multi-
ple objects, they have considered neither the motion of
the objects within the hand nor any manipulation of
objects based on rolling contacts. The authors{9] have
first studied the enveloping grasp for multiple objects.
They have shown a condition to judge the rolling con-
tact at each contact point and showed the rolling up
condition.

Kerr et al.[2] and Montana[14] formulated the kine-
matics for manipulation of an object under rolling con-
tacts with the fingertip. Li et al.[15] proposed a mo-
tion planning method with nonholonomic constraint.
Howard et al.[1] and Maekawa et al.[16] studied the s-
tiffness effect for the object motion with rolling. Cole
et al.[5], Sarkar et al.[6], Bicchi et al{7] and Han et
al.[8] proposed a control scheme for the object motion.

While there have been a number of works concern-
ing the grasp and manipulation under rolling contacts,

we believe that this is the first work for discussing the

manipulation of multiple objects under rolling con-
tacts.

Fig. 2: Model of the system

3 Object Motion Constraint

Fig.2 shows the grasp of m objects by n fingers,
where the finger j contacts with the object ¢, and ad-
ditionally the object i has a common contact point
with the object I. We assume the rolling contact at
each contact point. Let &g, £p; (§ = 1,---,m) and
Zrj ( = 1,---,n) be the coordinate frames fixed at
the base, at the center of gravity of the object i, and
at the end link of the finger j, respectively. Ecop; and
Y.ci; denote the contact coordinate frames whose o-
rigins are always at the point of contact. Ypz; and

"Zrpi; denote the local coordinate frames fixed rela-

tive to L p; and I g, respectively, which coincide with
Xcry and Lo Bij at time t, respectively. Tooi and
2104 denote the contact and the local frame between

~ objects, respectively(t = 1,---,7). Let p, € R? and

R, € R®*3 be the position vector and the rotation
matrix of the coordinate frame ., respectively. Let
*1p.. € R® be the position vector of ., with respect
to X.;. We assume that the fingers have enough de-
grees of freedom to exert an arbitrary contact force
and an arbitrary moment around the contact normal
{(s; 2 4) where s; denotes the number of joints of the
finger j. -

If we assume the pure rolling at each contact point,
the linear velocity of the object ¢ should coincide with
the linear velocity of the finger j at the contact point,
and the rotational velocity of the object i relative to
the finger j about the contact normal should equal
zero. Same discussion can be applied for the contact
between the object ¢ and the object I. These relation-
ships are expressed as follows:

Dg;; [ ggi ] = Dp; [ f,g ]s 1)
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Do { Pa: ] = Dou { el

A [ I3 "((RBx pC‘B:J)x) 4 %6
DBU - . o €3 RLB:} €R ’
Dy = [ I3 "((RFJ ‘73’0?;))‘) c RS,

7 | o eSRI,F;

Do = [ I _((RB;‘ pC’Ozt)x) c Réxﬁ’
L © ef Riou

where I3 denotes the 3 X 3 identity matrix, (¥x) de-
notes the skew-symmetric matrix equivalent to the
vector product, wp; and wr; denote the rotational
velocity vectors of Dpg; and 537 ; with respect to g,
respectively, and e3 [oo17. Aggrega,tmg egs.(1)
and (2) for j=1,---,mand t = 1,---, 7, respectively,
the equation of motmn constraint is denved as follows:

Dypyr = Dppp, 3
where prp = fPLm WLFy " pru wLFn]T €
4 Prri | | PrFj -
R "‘, wLFj = ‘ DFJ [ ij ] € Rﬂ Pr
5 wh -+ Phm “’Bm} € R™, Dy = [I4n o]

R(4n+4r}x4n DB o {DLB D ]T € R{4n+4r}x6m’
Dygp € R4“xsm includes Dpg;;, and Do € RS
includes both Doy and Doy In eq. (3), the matrix
Dpgpisa functlon of both pg and vectors Ypepin

and Z'p 11, -+ and @ are derived
by utxhzmg the metg d proposed by Montama[lé}

Now we consider the object motion constraint. For
a grasp composed of multiple objects, the objects
cannot move in an arbitrary direction due to eq.(3).
Since f[—DL Dpg] € RUntar)x(4n+6m)  the dimen-
sion of the SOlllthD of eq.(3) depends on 4n + 6m —~
rapk[-Dy Dpg). Moreover, 4n +6m —rank[—Dy, Dzl
= 6m — rankDy is always satisfied. Based on these
discussions, we now define the dimension of object mo-
tion as follows:

Definition 1 (Dxmensmn of object motion) For the
grasp of multiple objects, the grasped objects have

Iy = 4n +6m —rank|-Dy Djg|
= 6m — rankDo 4

dimensional motion.

It should be noted that, since the terms with respect
to finger motion (4n and D 1) disappear in the second
row of eq.(4), Iy shows the pure dimension of the
motion of grasped objects.

We now introduce a new vector ¢ € R’ whose di-
mension is same as that of object motion. It should be
noted that ¢ includes the independent variables con-
trolling the motion of the grasped objects. Now, let

us define Cas ¢ = Eprp + Eppg € R™, where
the matrices £; and Ep are defined in such a way
that these matrices have the minimum size making

[;—E};’DLL gi ] full column rank in the following e-
quation:

~D; Dpg Prri_|© (s
| E.r Ep P | | ¢ |’ ( )
We note that, since Dy is composed of Iy, in the

upper side, we can always make the above matrix full
column rank even when E; = o. Assuming E;, = o,

since ¢ becomes a function of pg as ¢(=E BPg, ¢ can
express the motion of the grasped objects. We also
note that the selection of ¢ is not unique.

By solving eq.(5) with respect to pyr and pp, the
following equation is derived:

[ ]=2 221¢]

-[5]e

where x* denotes the pseudo-inverse of *. It should be

D; Dg

noted that, since { ”EL Ep } is full column rank,

the null space does not exist.

To have the unique object motion, ¢ has to be al-
s0 uniquely determined for a given finger tip motion
P r; otherwise there exists an arbitrary motion for at
least one object even when the finger motion is deter-
mined. By using eq.(6), the unique determination of

¢ is guaranteed by the following condition:

Condition I {(Kinematic condition for manipulation}
A necessary condition for a robot hand to uniguely de-
termine the object motion is

Ker(L) =0, )

where Ker(*) denotes the null space of .

For a single object, Ker(L) = # when a three-fingered
hand grasps an object, while Ker(L) # # when an
object is simply placed on a palm or a table. Con-
dition 1 (Kinematic condition for manipulation) is
a necessary condition since we do not consider the
contact force applied to the objects. Since sizel =
4n x (6m — rankDyp) !, this condition can be finally
achieved when the number of fingers increases.

4 Dependency of Contact Force

4.1 Egquation of Dependency

‘We now make clear the dependency of contact force
among objects. Since the contact force and momen-
t are applied to the objects by the finger links, the

1To express the size of a matrix, we define a function sized =
m X n for a matrix 4 € R™X",
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equation of motion of the grasped objects is given by

Mppg+he=Dlgfcp+D5fco, (8)

T T

fep = [fep neBr -+ Fépn MoBal” € RY,
T

foo = [F&o1 ncor -+ Féor ncor]” € B,

where fop; and nep; (§ = 1,---,n) denote the con-
tact force and the moment about the contact normal
applied by the finger j, respectively, and foo, and
neot (t = 1,---,7) denote the contact force and the
moment about the contact normal at the 1-th contact
between objects, respectively, where we assume that
the object I can apply the contact force to the ob-
ject i when i < I. My and hp denote the inertia
matrix and the vector with respect to the centrifugal
and the Coriolis’ force, respectively. From eq.(3), the
constraint condition among objects is expressed as

Dopp = 0. (9

By using eq.(8) and the differentiation of eq.(9), the
following relation is derived:

AfC = bs (10)

where A = [DoM3' DIy, DoM3'D})] and b =
DoM g‘hg —~ Doppg- Eq.(10) shows the dependency
of the contact force, namely f, is dependent on fo 5.
4.2 Uniqueness of Contact Force

Now, we have a couple of questions. Can we al-
ways find the unique contact force foo? I this is
not the case, under what condition can we have the
unique foo? Let us now answer these questions. If
DoM 3! D} in eq.(10) is nonsingular, foo can be
expressed nniquely in the following form:

foo = (DoM5' D) (~DoM3'Dlsfcs

+DoM§1h3 — Dopg). (11) |

Therefore, the nonsingularity of Do M3 DY is the
necessary condition for finding the unique f.,. Tak-
ing the nonsingularity of M 5 into account, the non-
singularity of Do M 5! DT is equivalent to the follow-
ing condition: :

Condition 2 (Uniqueness of contact force) The neces-
sary condition for the contact force among objects to
be uniquely determined is given by

rankDo = 4r, (12)

This condition can be satisfied under 4r < 6m if we
assume that Dy is a full rank matrix.

Now, suppose that a contact force among objects is
not uniquely determined. Under such a condition, it
is not ensured whether or not the contact force always
exists within the friction cone at the point of contact.

The contact force components in the null space pro-

duce a slipping motion at the contact point.

4.3 Internal Forces

Now, we discuss the relationship between the de-
pendency of the contact foree and the internal force.
By the relationship of duality between force and in-
finitesimal displacement, we can obtain the force bal-
ance equation for multiple objects as follows:

f5 = Difc
= Dipfep+ D50, - (13)
e :{f’gl nl, - L n5, T € R™,

where fg; and ng; (i = 1,--<,m) denote the force
and the moment at the center of gravity of the object
i, respectively.

Since Dg € R(An+4m)X6m 5 homogeneous solution
exists, which means that there exists internal force ac-

cording to 4n 4 4r — rank DL, Same discussion can be

applied for Do € RY"%5™  Here, we define the dimen-
sions of the internal forces as follows:

Definition 2 (Dimension of internal force) For a grasp
of multiple objects, the grasped objects have the follow-
ing tniernal forces

It = 4n + 4r — rank D%, (14)
Iro = 4r«—rankDg, « (15}

where Iy and I;o denote the dimension of the total
internel force and the internal force among objects,
respectively.

For the grasp satisfying Iyo > 0, the internal force
occurs passively even if all the contacts with finger-
s are released and if all the contacts among objects
are maintained. This internal force among objects is
peculiar to multiple objects and is not affected by the
finger forces. By comparing Definition 2 (dimension of
internal force) with Condition 2 (uniqueness of contact
force), since we can see that Condition 2 is the same as
Iro = 0, the contact force can be determined uniquely
when the internal force among objects does not exist.
Moreover, since rankDp < rankDrp + rankDg is
satisfied, the internal force among objects is included
in the total internal force. Therefore, we cannot ap-
ply an arbitrary internal force for the grasp without
satisfying Condition 2 (uniqueness of contact force).

5 A Sufficient Condition for Manipu-

lation ;

We now examine a sufficient condition for robot
hands to manipulate the grasped objects arbitrari-
ly under the motion constraint while maintaining the
friction constraint.

Each contact force should exist within the friction
cone as long as each contact avoids a slipping motion.
Approximating the friction cone by the k faced poly-
hedral convex cone, we can express each contact force
and moment as follows:

Fe=VA, Ao, (16)
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We assume that Condition 2 is satisfied. Differen-
t from the condition for the manipulation of a single
object, we have to take the motion constraint and the
dependency of the contact force into account. For an
arbitrary manipulation, we have to examine whether
the objects can generate an arbitrary acceleration or
not[3]. By using eqs.(6) and (8), the following equa-
tion is derived:

M3pB{ =DLfc - hs, (17

where hg = hy + MgB(. FEq.(17) shows the re-
lationship between the object acceleration and the
contact force under the motion constraint among ob-
jects. Since the dependency of contact force is not tak-

en into consideration in eq.(17), we consider eq.(10)

and formulate the linear programming problem. To

make AV nonsingular, we partition V and A as

V= }V; V) and A = [AT A7, respectively. Since
Ais tull row rank under (ljondition 2, we can always
make AV nonsingular by a proper method of parti-
;:_i%n. By using this partition, eq. (10) is rewritten as
ollows: :

A =~(AV1)"H(AV2A — b). (18)

Substituting eq.(18) into eq.(17), we consider the fol-
lowing linear programming problem:

Maximize 2 = min[xir if]T R

Subject to MpB¢ = Hq, (19)
Az Z 0,

where

M35B{ = MpB¢ - DLV1(AV,) ™% - ks,
A= A - (AV) b
= —(AV]) T AV A,
H = DLV, - DLV, (AV,))1AV,.

Due to eq.(18), we cannot impose any constraints for
A; such as A; > o. Therefore, we consider maxi-
mizing the minimum element of A; in the objective
function. Moreover, in eqs.(17) and {18), there are
nonlinear terms with respect to the centrifugal and

Colioris’ force, hg and b. To get rid of these terms
from the formulation, we used the coordinate trans-
formation from ¢ to ¢.

We now derive a condition for generaling ar-

bitrary acceleration for multiple objects. Tet

ei,es, -, e, € R'™ be Iy number of given linearly
independent vectors[3].
A1, Alety, R R
A1 = Arpnr ALl Ar=1,0 Al-Iy, and Ay =
A2p1s s A2k Ty A2—1,° "y Aa—f,, be the solutjon-
s of the linear programming problem (19) for ¢ =

€1,- 7", €Ly, €1, ", —€],,, respectively. Now we
have the {c")llowing condition:

Let Ay = Ax%i:”n*i«ymy

Condition 3 (Generation of arbitrary acceleration) As-
sume that Condition 2 is satisfied. A sufficient con-
dition for the grasped objects to generate the accel-

eration ¢ arbitrarily is that the linear programming

problem (19) has solutions for 214 number of ¢ =
teg, (k=1,---,Ipn) satigfying b?th Aiig 2> 0 for all

Mgk (=1, Iy) and Arpe+A1-k > 0 for at least
one pair of Aysrandiy g (k= 1,---,Ip). '

Proof See Appendix.

To solve the linear programming problem, we can use
a set of the orthonormal basis as ex (k= 1,---,Iy).
Condition 3 {generation of arbitrary acceleration) is
a sufficient condition since we set the approximat-
ed friction cone existing inside of the actual friction
cone. Diverging from the condition for the manip-
ulation of a single object[3], we substituted vectors

er {k=1,---,Iy) into the acceleration & taking the
motion constraints into consideration.‘ Moregver, due
to the term b in eq.(18), the condition A1 +A1—x > ©
is added for the reason shown in the Appendix. To
satisfy A1+x + A1—x > 0, we consider maximizing the
minimum of A; in the objective function.

So far, we have shown three conditions for manip-
ulating multiple objects, i.e., the kinematic condition
(Condition 1), the uniqueness of contact force among
objects (Condition 2), and generation of arbitrary ac-
celeration (Condition 3). Since Condition 3 is a suffi-
cient condition for manipulation, Condition 1 should
be included in Condition 3.

6 Controller

We now derive & controller for the object motion.
‘We first discuss the relationship between the end link
and the joints of each finger, so that we may introduce
the control scheme in joint level. Since the velocity at
the end link of each finger can be expressed by the
joint velocity of each finger, we obtain the following
relationship: :

Jr0=Dyppp. (20)

The equation of the finger motion is derived by using
the Lagrange’s method as follows:

MpO@+hp=71-J%fcp, (21)

where My, hp and r are the inertia matrix, the vec-
tor with respect to the centrifugal and Coriolis’ force
and the joint torque vector, respectively.

As a controller for object manipulation, we extend-
ed the trajectory controller proposed for the grasp of a
single object[17]. Since the derivation of the controller |
is almost same as that which is described in [17], we
omit the formulation in detail. Assuming that each
finger does not have the redundant degrees of freedom
{s; =4,7 = 1,---,n), this controller has the following
form as a joint forque command:

r = JLBTDI*F+ JLNgks, (22)
F = Mp(l,~ Kvb,—Kpb)+hp, (23)
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where

Mg = BT (Mp+ D 07" MzJ3 D.5)B,
d
dt

Fig.5. In this grasp configuration, the force focus ex-
ists for both objects, and these force focuses lie on the
line including the contact point between the two ob-
jects. Thus, we have two dimensions for two force

hg = BThg + BTDT 07T (Mp—(J 7' DLp)bp + hp)i%cuses capable of moving on the line(Fig.5(a) and

6( :: C—'Cd:

K p and Ky are the diagonal matrices corresponding
to feedback gain, and ¢, is the desired valueof (. N

is the null space of BT DT where BT DI ;Np =
o is satisfied. The first term of the right-hand side
of eq.(22) controls the position of the objects to the
desired trajectory, and the second term controls the
internal force to the desired value.

Here, the control law itself does not ensure that
the contact force caused by both finger link and other
objects produces an arbitrary acceleration for the pa-
rameter {. Therefore, before applying the control law,
we have to confirm whether an arbitrary acceleration
can be achieved or not based on Condition 3 (gener-
ation of arbitrary acceleration). Moreover, to confirm
whether the desired internal force can be realized or
not, the grasp must satisfy Condition 2 (unigneness of
contact forceg. »

7 Examples

For simplicity, we consider 2D examples. Fig.3
shows the grasps used for numerical examples, where
the results are shown in Table 1.

For the grasp as shown in Fig.3(a), the grasped
objects have four dimensional motion and zero di-
mensional internal force since Ips = 4 and Iy = 0.
The physical interpretation of this dimension of mo-
tion is shown in Fig.4 which depicts two dimensions
for translational motion at the center of gravity be-
tween two objects(Fig.4(a) and (b)), one dimension
for rotational motion around the center of gravity
(Fig.4(c)), and one dimension for rotational motion
without changing the rotation angle around the cen-
ter of mass (Fig.4(d)). The grasp shown in Fig.3(a)
satisfies Condition 1 (kinematic condition for manipu-
lation) because the finger can manipulate the objects
arbitrarily under the motion constraint if we assume
that two objects always make contact at each con-
tact point. Condition 2 (uniqueness of contact force,
rankDo = 2r for 2D example) is also satisfied. On
the other hand, Condition 3 (generation of arbitrary
acceleration) is not satisfied because the contact force
does not exist when two objects move in a downward
direction.

Fig.3(b) also shows the grasp of two objects by two

fingers. The difference between Fig.3(a) and Fig.3(b)

is the position of the contact point between a fin-
ger and an object. This configuration satisfies neither
Condition 1 nor 3, which means that two objects can
move freely in a vertical direction even if two finger po-
sitions are fixed. Therefore, the fingers cannot control
the objects’ motion in a vertical direction.

The grasp as shown in Fig.3(c) has four dimensional
motion and four dimensional total internal force since
Iy = 4 and I; = 4. The physical interpretation of

this dimension of the total internal force is shown in

)), and have one dimension for the rotation of the
line(Fig.5{c)). The other one dimension is the magni-
tude of the internal force with the position of the force
focuses unchanged(Fig.5(d)).

The grasp of four objects as shown in Fig.3(d) has
five contact points among objects. This grasp configu-
ration has three dimensional motion (I = 3) and six
dimensional total internal force (I; = 6). Moreover,
the total internal force contains one dimensional in-
ternal force among objects(I7o = 1). Therefore, since
Ito # 0, Condition 2 {uniqueness of contact force) is
not satisfied. Since AV, is not invertible, eq.(19) can-
not be formulated, and we cannot judge Condition 3
(generation of arbitrary acceleration). -

Fig. 3: Several grasp configurations

{a) ; ‘ ®»
(o (d)

Fig. 4: Four motion degrees of freedom

8 Experiment

We performed the experiment of trajectory track-
ing by using the Hiroshima Hand[18]. The Hiroshima
Hand is composed of three planar finger units, where
each finger has the same structure and has three joints. -
Since the Hiroshima Hand is driven by the velocity ser-
vo, we used the following controller as a joint velocity
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— ;Iable 1 Reszlt of calculation
sizeDp | rankDpg | size D’[L rank DTL Iy { It | Ito | Cond.1 { Cond.2 | Cond.3
B B
(a) | 6x6 6 6 x 10 6 4 10 0 O O X
(b)| 6x6 5 6 x 10 6 4 |1 0 X O X
(© 1 10x6 6 10x 14 10 4740 O O O
{d) | 18 x 12 12 18 x 20 17 3 6 1 O X

(e}

Fig. 5: Four internal force degrees of freedom

command: . |
8= KJC(Ca~0), (24)

where K is the gain matrix. For a planar grasp, each
finger must have at least two joints. Since each finger
has three joints, Pseudo-inverse of J 5 is used in the
command. The radius of each object is 0.01]m}. The
objects contact with the third link of each finger. In
the experiment, gy, ¥51 and ¢p; are planned to keep
their initial values while yp, increases 0.01[fm] in 1
[sec]. The position of the objects are measured by
analyzing the image taken in a video tape. From Fig.6,
we can see that the objects fairly well follow along the
desired trajectory.

9 Conclusions '

This paper discussed the manipulation of multiple
objects under rolling contacts. For manipulating mul-
tiple objects, each object’s motion is restricted by the
other objects, and the contact force between objects
is not controlled independently. Taking the above is-
sues into account, we showed three conditions for the
manipulation of multiple objects, i.e., a kinematic con-
dition for determining object motion uniquely, a suf-
ficient condition for generating arbitrary acceleration
on the objects, and the necessary and sufficient condi-
tion for determining the contact force among objects
uniquely.

Finally, the authors would like to express our grat-
itude to Mr. Tatsuya Shirai and Mr. Shinya Nakano
for their help in the experimental and the simulation
study.
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Fig. 6: Experimental results
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A Proof for Condition 3

H the linear programming problem (18) has solu-
tions for 21y, number of ¢ = ey, (k= 1,--,In),
we have the following 2/ number of equations:

MBBEI = HA?-Q-I,

MpBey,, = HMAyyy,,
~MpBe, = HA?—-I:

—~MpBer,, = HXs.j,.
By introducing non-negative scolors piy, ---, pir,
P-1, "y P—1I,, a0 arbitrary ¢ can be expressed as

¢ = puer+-+pin,en, —pr1--—p_g.e,

= (p+1 - p«—-l)el +e +‘(9A+IM e p—-IM)eIM' (25)

Corresponding to eq.(25), the solutions for A, are ex-
pressed as ,

A2 = prrdesr o F Ppny Aaeny
+po1Ago1 A F oy, Aeer,, 2 0. (26)
Thus we obtain A; generating arbitrary ¢. We now
examine whether we can always make A; > o for ar- ‘
bitrary ¢. From eq.(18), the following equations are

“derived:
Ais1 = ~(AV) YAV —b),
Atene = ~(AV1) N (AVadgyr, — b), (27)
Aisr = —(AV1)THAV2Ae ;- b),
Al...ju = *(AV])“l(AV;)Az_IA, - b).

By summing all equations in egs.(27), the following
equation is derived:

P+15\1+1 RARRRE o JSW Y8 ilmf.\.s +(AVy) b=
~(AV)THAV (ps1dogr + - + pory Aany) — b}

Although the left hand side of eq.(28) expresses A;,
we cannot always insure A, > o since b is included in

the left hand side of eq.(28). However, since A, and
Ak correspond to the acceleration in the opposite
direction, & = e} and é = —e.g, respectively, there
is no effect pf accgleration if we increase A; in the
direction of Ayyx+A1—&. In other words, by observing
eq.(25), we can put pyx = pr1+aand p_i = p_y +a
for an arbitrary o without loss of the arbitrariness
of é since o disappears as pyx — Pk = Pyr — Pk-
Since we can set o large enoqgh, we can always make
AL = pradip + oo+ oy Aon, H(AV) D 2 0
if Adyyk + Aok > 0 is satisfied. Now we can always

‘satisfy A; > o and A; > o for an arbitrary ¢. Since

MpB is always full column rank, the arbitrariness

of { is equiva.lént to the arbitrariness of ¢. These
discussions hold the theorem.
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