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Abstract

In this paper, we argue thal myoeleciric signals
(EMG) measured from surface electrodes can be uli-
Hzed as an interface 1ool for the handicapped. The
EMG signal contains information about the operator’s
intended motion as well as the force level of the mus-
cles and may be suiiable as an input signal for a new

interface tool. This paper proposes an EMG controlled.

pointing device using a neural network and develops a
prototype system. In the proposed device, an opera-
tor’s intended direction of the poinier is estimated us-
ing the finite number of base directions which are set
‘on the computer display. The neura! network has to
estimate the probability that the pointer will move to
each base direction, so that the heavy learning calcu-
lation and the huge network structure are not necces-
sary. Through experiments, i is shown thai the direc-
tion and the velocity of the pointer movement can be
controlled by using the EMG signals.

1 Introduction

Up to the present, various pointing devices have
been proposed as an interface tool for computers and
virtual reality (VR). In particular, a mouse invented
by Engelbart in 1964 has been used by many-people
as a standard pointing device [1]. Without using a
pointing device, it is almost impossible to utilize a
computer efficiently.

Many researchers have tried to develop new point-
ing devices such as a gesture recognition system us-
ing a computer vision [2] and a motion tracking sys-
tem which traces eye movement [3] in order to realize
easy operations. Also, in the research area of VR, the
equipment which can measure 3D position by using
electromagnetic fields is often used. However, in order
to use such devices, human body movements are in-
dispensable, and it is impossible to measure invisible
information such as internal force, motion intention
and mental stress. In addition, heavy signal process-
ing is often used in the vision system, which presents
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another difficulty.

Let us consider the case that a user of these pointing
devices is a physically handicapped person. In recent
years, personal computers and Internet technologies
have supported the social integration of the handi-
capped and improved their Quality Of Life (QOL)
through various communications and by providing
useful information [4], [5]. The pointing device for
them must serve as a part of their body. Generally,
the handicapped often use specially designed equip-
ments or pointing devices by simplifying their proper
functions. It is difficult to say that ease of operation
is sufficient in such a situation.

On the other hand, an interface tool for 2 handi-
capped person has been developed using EMG signals
which are generated from his or her muscles. It is
often used for generating control commands of a pros-
thetic hand for an amputee [6]-[11]. The EMG signal
contains the information on the force level of corre-
sponding muscles and mechanical impedance of joints
such as stiffness, viscosity, and inertia in addition to

" the intended motions of the operator. This signal may

be suitable as an input signal to a new pointing device.

In this paper, we propose a new pointing device us-
ing the EMG signals and develop a prototype system.
A neural network is used as a pointer controller in the
prototype system, so that the system can adapt itself
to changes of the EMG patterns according to the dif-
ferences among individuals, different locations of the
electrodes, time variation caused by fatigue or sweat,
and so on. Also the proposed method may be useful
for not only the handicapped but also other people,
because the EMG signal contains information on in-
ternal force among several muscles which cannot be
measured by other sensors.

2 EMG Controlled Pointing Device

"Figure 1 shows the concept of the EMG-controlled
pointing device. This system uses the information on
the EMG signals for pointer control. The operator’s
intended direction of the pointer movement and its ve-
locity are estimated from the EMG signals, and natu-
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Figure 1: Concept of the EMG-based pointing device

ral interaction can be expected using this information.
The desktop space is not necessary for this system.

To realize reliable GUI operation, it is necessary
that the direction of pointer movement must be con-
. trolled accurately according to the intention of the
user. In the proposed method, a several numbers of
base directions are set on the computer dxsplay, and
the operator’s intended direction is estimated from the
probability that the pointer will move to each base di-
rection. For example, the direction is estimated as the
bold arrow using eight base directions in the Fig. 1.

In such a way, any operator’s intended directions
can be estimated using the finite number of the base
directions. The neural network ouly has to estimate
-the probability of the pointer movement to each base
direction, so that the heavy learning calculation and
the huge network structure may be avoided.

3 Structure of the System

The structure of the prototype system is shown in
Fig. 2. This system consists of the EMG signal pro-
cessing part, the neural network part, and the pointer
control part.
linearized Gaussian mixture network (LLGMN) pro-
posed by Tsuji et al. [12] is used. The LLGMN
can acquire the log-linearized Gaussian mixture model
through learning and calculate the posteriori proba-
bility of the pointer movement to each base direction
based on this model. The probability density function

is expressed by the weighted sum of the Gaussian com-
ponents. It enables the LLGMN to learn the compli-

cated mapping between the operator’s EMG patterns
and the pointer movement.

In the neural network part, the log- .

3.1 EMG Signal Processing Part

First, the EMG signals measured from L pairs of
electrodes (Web5000: NIHON KOHDEN Corp.) are
rectified and filtered out through the second-order
Butterworth filter (cut-off frequency : 1 [Hz], UAF42,
BURR-BROWN Corp.), and they are digitized by
an A/D converter (sampling frequency, 10 [Hz]; and
quantization, 12 [bits]). These sampled signals are de-
fined as EMG;(n) (: = 1,--:,L), and the following
equation is calculated: ‘

EMG;i(n) — EMGS a
« EMGP™ ~ EMG;*’ :

a(m =13

where EM G}, EM GE”‘” are the mean values of
EMG;(n) while relaxing the arm and keeping the max-
imum voluntary contraction (MVC), respectively. The
a(n) indicates the ratio of the muscular contraction
level to the MVC. The velocity of the pointer move-
ment can be regulated according to this ratio.
Next, EMGi(n) are normalized to make the sum of
L channels equal 1:
+3% .
2i(n) = — EMGi(n) - EMG; . @)
Z(EMG (v) - EMGY

il

where z;(n) is an element of the feature vector ®(n) =
[z1(n),z2(2), --,zL(n)]T € RL for the input of the
neural network part. Also, the square sum of the
EMG;(n) is calculated for the detection of the pointer
movement: when this value is over the prespecified
threshold, 1t is determined that the movement has oc-
curred.

3.2 Neural Network Part

In the neural network. part, the probability of
pointer movement to each base direction is estimated
from the EMG pattern #(n) which is extracted in-the
EMG signal processing part.

First, the input vector ®(n) € R is preprocessed
and converted into the modified input vector X{(n) €
R a5 follows:

X(n) = [Laz(m)T,5:(n)? z1(n)za(n), -,
xl(?‘)“’L("),xz(")z,22(")1‘3(”),
-y ma(n)zr(n), -z ()T (3)
The first layer consists of H = 1+ L(L + 3)/2 units
corresponding to the dimension of X (n) and the iden-

tity function is used for an output function of each
unit.
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Figure 2: Structure of the prototype system

Each unit of the second layer receives the output
of the first layer (V04 (n) weighted by the coeficient

w™ and outputs (D0 u(n) as follows:
(2) !
Op,m(n) = M,
Z Z e‘x{) ( }fi.’ m"(n) (Z)Ik (n))
F=lm/=1
(4)
oy ’
(2)Ik,m(n) = z(1)()}‘(11)1”5"&,3'71)~ (5)
h=1

It should be noted that (4) can be considered as a
kind of generalized sigmoid function. The third layer
consists of K units corresponding to the number of the
base directions. The unit & integrates the outputs of
My units {k,m} (m =1,-.-, M) in the second layer.
The relationship between the input and the output is
‘defined as:

®0y(n) = B L (n), (6)
My

@e(n) = > D0k m(n). M
mm=]

This output (3O (n) indicates the posteriori prob-
ability of pointer movement to the base direction k.

3.3 Pointer Conirol Part

" The direction of the pointer movement is estimated
using-the output of the neural network part. The out-
put of the LLGMN (30 (n) indicates the posteriori
probability that the pointer will move to each base di-
rection k shown in Fig. 3. Therefore the vector of the
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Figure 3: Méving direction of a pointer

pointer movement V(n) = (Vx(n), Ve (n))T for nth
input pattern is calculated as follows:

Vi(n) = _Aln)es(n) Vi (n) = Aln)ey(n)
y/e2(n) +ej(n) \/€2(n) + e(n)

(8)
~where A(n) is a velocity gain of the pointer movement,
and ez(n),ey(n) are defined as:

K
ex(n) =Y POs(n)cos(2r(k — 1)/K),  (9)
k=1

X
y(n) = PO(n)sin(2n(k - 1)/K).  (10)

k=1



o

CHE

E‘i« T(")'Sb) Tz‘m(‘ﬁ) 7."(n)(w 7:‘(11)(” T(u”(‘?)
F 104

=

20

R

St

L

<=

R

& 0 Y ¥ ¥
& 2 oz 372 Iz

Desired direction, ¢ [rad]
Figure 4: Teacher signals of the LLGMN

4 Learning Rule

Before the operation, the LLGMN must be trained
the nonlinear mapping between the EMG patterns and
the pointer movemeni. Then the LLGMN can esti-
mate the pointer movement based on the statistical
model.

Here the learning method is explained. In the learn-
ing process, the desired direction of the pointer move-
ment is shown in the display. The user generates the
EMG signals according to this direction. Then the
pair of the desired direction ¢ and the EMG pattern
-z(n) are used as the learning data. The order of pre-
senting the desired direction ¢ is random, where ¢ is
defined as 0 in the positive direction of X-axis and
increases counterclockwise in Fig. 3.

In the case that the number of the base duectzons
is K, the teacher signal Tk (qﬁ) (k=1,---,K) is cal-
culat.ed as follows:

208(] @~ Praser}) = cO8(| Snssea =B ) cos( 3X)
{COS(E‘ﬁ—¢baue1l)+593(!¢bue2—¢')][1 —Cos( = )

T (8) = () g o amk
0 (other),
(11)
where Puasei, Poasez are defined as:
2n(k ~ 2rk
bomeer = ZEZD g =2 ()

For example, the teacher signals for four base direc-
tions which corresponds to the up, down, right, and

left directions are shown in Fig. 4. When the desired-

direction ¢ does not agree -with the base direction,
two units in the third layer which are close to ¢ are

selected, and the teacher signals are given to them as -
shown in the figure. The teacher signal T, ,ﬁ")(qS) is de-

termined according to the projection of the unit vector
in the desired direction ¢ on the kth base direction. It

should be noted that Z T () = 1.

As the energy funcnon for learning, we use:

In,

)
1=

it

+
I

(T (¢); P 0(n))

A . : :
3T (6)log TEV(9)

k=1

H

ZT(”)(qs)log(”ok(n) (13)

k=1

where Ix represents the difference between two prob-
ability distributions, which is defined as the Kullback-
Leibler divergence. The learning is performed to min-
tmize J.

5 Experiments

In order to examine the availability of the pro-
posed method, the experiments have been conducted.
The subject is a graduate student: male, age 29 in a
healthy condition. In the experiments, the direction
of the pointer movement is controlled according to the
EMG signals when the operator bends his wrist joint
to the intended dirvection. '

5.1 Example of the Pointer Control

Figure 5 shows an example of the pointer control.
In this figure, the traces of the pointer, the EMG sig-
nals, the square sum of £M G;(n), the muscular con-
traction level a(n), the output of the LLGMN and the
estimated direction are shown. Six electrodes, four
base directions and 500 learning data (100 random di-
rections x 5 samples) were used in the experiment.
The traces of the pointer are plotted every 0.1{sec]
and two arrows indicate the pointer movement. The
velocity gain of the pointer movement A(n) was regu-
lated from 0 to 40 [pixels/sec] in proportion to a(n). It
can be seen that the direction and the velocity of the
pointer movement can be controlled using the EMG
signals.

Next, the subject tried to draw a rectangle, a tri-
angle and a circle shown in Fig. 6. Six electrodes
and four base directions and 500 learning data (100
random directions x 5 samples) were used in the ex-
periment. The velocity gain of the pointer movement
A(n) was fixed with 30 [pixels/sec]. The pointer could
be controlled approximately according to the desired



EMG signals{mV]
2 99 g 2 9

g
o o

Velucity Squure sum

0.0

Mgy SO Mo YO Buin, Aln) of EMGn)
f f i

the LLGMN, (3)0k

Outputs of

0.0

ol

Estimated
direction (rad]

30 6.0
“Time [sec}

0.0

Figure 5: An example of the pointer control
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Figure 6: Results of the drawing experiments
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Figure 7: Accuracy of the estimated direction depend-
ing on the number of learning data

line although many errors of the direction were ob-
served. It took about 10 seconds to draw each figure.

5.2 Accuracy of the Estimated Direction

The estimation ability of the operator’s intended
direction is examined using the proposed method.
The number of learning data and base directions are
changed from 120 to 1080 (10, - -, 90 samples for 12
learning directions) and from 4 to 12, respectively. In
the experiments, the desired direction of the pointer
movement is shown in the display. The subject bends
his wrist joint according to this direction and the EMG
signals are measured from six electrodes for estima-
tion. The number of trials for estimation are 3600
{100 samples for every 10 degrees) and the order of
presenting the desired directions is random.

The accuracy of the pointer movement depending
on the number of learning data is shown in Fig. 7.
Each plot shows: (a) The mean values and (b) the
standard deviation of the direction error for all tri-
als. The number of learning data was.changed from
120 to 1080 (10, ---, 90 samples for 12 learning di-
rections) and four base directions were used in this
experiment. The accuracy of the pointer movement
improves depending on the increase of the number of
learning data. It seems that 600 learning data are
sufficient in this case. ,

Next, the accuracy of the pointer movement de-
pending on the number of the base directions were
examined. The mean values and the standard devia-
tions of the direction error for all trials are shown in
Fig. 8(a), (b). The number of the base directions was
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Figure 8: Accuracy of the estimated direction depend-
ing on the number of the base direction
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Figure 9: Accuracy of the estimated direction

changed from 4 to 12, and 800 learning data were used.
It can be seen that the accuracy improves depending
on the increase of the number of the base directions,

although a large number of the base directions requires

much longer learning time.

Figure 9(a), (b) show the accuracy of the pointer
movement depending on the direction. This radar
chart indicates the mean values and the standard de-
viations of the direction error for 3600 trials (100 sam-
ples for every 10 degrees). The number of the base di-
rections which are shown in the figure as dotted lines is
(a) 4, (b) 12, respectively, and 600 .learning data were
used. In case of (a), the error becomes large when
the desired direction differs from the base direction.
On the other hand, the error is almost constant for
each desired direction in (b). Also, the error in (b) is
smaller than that in (a).

8 Conclusion

In this paper, we propose a new pointing device us-
ing the EMG signals, and develop a prototype system.
By experiments, it is shown that the direction and the
velocity of the pointer movement can be controlled by
using the EMG signals.

In the future, we wish to conduct the experiment
with many subjects in order to make clear the effec-
tiveness and the problems of this system.
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