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Abstract

This paper discusses how many fingers are necessary
and sufficient for capturing a pyramidal-like object
placed on a table under the gravitational field. Allow-
ing that the contact friction is small enough to ensure
that any direct grasp may fail in achieving an equilib-
rium grasp, we prove that a planar two-fingered hand
are necessary and sufficient for achieving the task for
an idealized 2D triangle object placed vertically on a
table. We also consider 3D pyramidal-like objects, and
prove that a spatial two-fingered hand are necessary
and sufficient for achieving the task.

Key words: Multi-fingered Robot Hand, Equilib-
rium Grasp, Pyramidal-like Object, Grasp Algorithm.

1 Introduction

There are two grasp patterns, ope is the finger tip
grasp that emphasizes on dexterity and sensitivity,
and the other is the power grasp that provides highly
stable grasp due to a large number of distributed con-
tacts on the grasped object. While there are many
works discussing grasp issues for both grasp styles,
most of them assume that the hand already grasps
an object. On the other hand, we are particularly in-
terested in the whole grasp procedure that includes,
for example, the approaching, the detaching, and the
grasping phases. The detaching as terminology means
removing an object from a table in this paper. A robot
hand first approaches an object placed on & table until
the hand reaches the object. If the object has a shape
such that the hand can directly grasp it, the hand can
achieve a force-closure grasp by simply choosing an
appropriste set of the grasp points, where the force-
closure grasp means that the finger can generate a
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Fig.1: An overview of both initial and final states

set of contact wrenches that can balance external ob-
ject wrenches. In such a case, planning the detach-
ing phase is not necessary, since the detaching motion
is automatically completed by simply lifting up the
grasped object. However, if the object is & polyhedra
whose face is triangle, the direct grasp may often result
in & failure due to a slip between the object and the
finger tip. Under such a condition, the planning for
the detaching phase is especially important for further
steps. For a pyramidal-like object, we consider the
strategy for achieving an equilibrium grasp by & multi-
fingered robot hand under the gravitational field, as
shown in Fig.1. In general, an equilibrium grasp un-
der the gravitational field allows the object to move by
an external wrench and, therefore, it provides & mild
constraint compared with the force-closure grasp.

An interesting question is that how many fingers are
necessary and sufficient for finally achieving an equi-
librium grasp for a pyramidal-like object placed on &
table under the gravitational field. The goal of this



paper is to answer the question. Assuming that each
finger tip is modeled by a frictional point contact and
the object is placed vertically on a table, we begin by
considering a 2D problem, where the object is assumed
to be an idealized 2D triangle object whose corner an-
gles are less than rectangle. For the 2D problem, we
show an algorithm leading to an equilibrium grasp by
a planar two-fingered hand. With this algorithm, we
prove that the necessary and sufficient number of fin-
ger is two for the 2D model.

Further, we discuss the same problem for & spatial
pyramidal-like object, and prove that a spatial two-
fingered hand can achieve the task given.

2 Related works
There are a number of papers discussing the manipu-
lation of object for increasing the dexterity of robotic
hands, while most of them assume that the hand al-
ready grasps the object. In [2]-[5], significant contri-
butions are presented for the analysis and the control
of rolling, sliding, and pivoting contects. By utilizing
these basic primitives, motion planning for re-grasps
and re-orientation have been addressed [6]-[9]. On the
other hand, there exist & couple of papers dealing with
global motion planning that includes the approeching,
the contacting, and the grasping phases. Fearing [10]
has first discussed the whole procedure for approach-
ing and grasping an object by using a two-fingered
hand, and proposed the hand priority grasp, in which
the finger closing motion automatically changes the
orientation of an object placed on & teble and finally
leads to an equilibrium grasp. The idea is simple
enough for applying to a planar object placed on a
table. Kaneko, Tanaka, and Tsuji [11] observed how
human envelope a cylindrical object placed on a table,
and found that humen changes his (or her) grasping
strategy according to the size of objects, even though
they have similer geometry (Scale-Dependent Grasp).
Based on such human grasping they presented a way
for achieving an enveloping grasp for cylindrical ob-
jects placed on a table [12]. This approach was fur-
ther extended to column objects whose cross sections
are polygon {13], [14]. Kleinmann, Henning, Ruhm
and Tolle [15] focused on the transition grasp from &
finger tip grasp to a power grasp, and showed four dif-
ferent strategies. Kaneko, Kessler, Weigl, and Tolle
first discussed the global motion planning for achiev-
ing an equilibrium grasp for pyramidal-like objects
[16]. For a two-fingered hand whose opening is con-
trolled by & single parameter, Rimon and Blake [17]
discussed a preshaping problem combined with the

grasping phase. For an initial hand configuration, an
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object has some freedom to move but finally leads to
the desired immobilizing grasp by simply closing the
fingers.

3 In case of 2D problem

Suppose an idealized 2D triangle object whose corner
angles are less than rectangle, as shown in Fig.2 (a),
where 1 {n/2 > 1) is the top corner angle, and g, b
and ¢ denote each corner, respectively, and s;, 87 and
s3, denote each edge, respectively. Before discussing
in detail, we provide several assumptions.

Assumption 1: Kinematic interference among fingers,
table, and object are neglected.

Assumption 2: Each contact between the ﬁnger tip
and an object is modeled by point contact with
friction.

Assumption 3: The object and the finger tips are
rigid, and the object shape, its position, ori
entation, and the center of gravity which never
exists on the edges are known.

Assumption 4: Each finger tip can produce an arbi-
trary force within the friction cone.

-Assumption. 5: The effects of dynamics of the hand-
object system are neglected and a quasi-static
motion is assumed.

Assumption 6: a > 0, where « is the friction angle
and tan a = u exists for friction coefficient u.

Assumption 7: As shown in Fig.2 (a), we divide the
triangle into six segments by a line between each
corner and the middle point of the edge which
does not include the corner. The center of grav-
ity is assumed to be within one of the triangles
making contact with the table,

Assumption 7 is for avoiding the explanation of & cou-
ple of preliminary procedures. Actually, a robot hand
can easily produce such a situation by rotating the
object around & corner.

For the 2D grasping problem, let us now consider how
many fingers are necessary and sufficient for achieving
an equilibrium grasp. We first show an algorithm en-
abling & planar two-fingered hand to achieve an equi-
librium for an idealized 2D triangle object.

For our convenience, two fingers are called by Fy and
F, respectively. Without any loss of generality, we
can focus on the case in which the center of gravity is
located in the left part of the two triangles. This is
because if the center of gravity exists within the right
part, we can apply the following procedure by sim-
ply changing the rotating direction. A necessary and



Combined

O)2> y>2a

 Fig.2: A triangle object
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Fig.3: Any direct grasp results in failure under ¢ > 2a

sufficient condition for two contact points to form an
equilibrium grasp is that the angle between the normals
to contact edges lies in the interval [x — 2a, 7 + 2a],
and the line joining the two points lies in their fric-
tion cones [17], [18]. This theorem ensures that a
direct grasp can easily achieve an equilibrium grasp
if ¥ < 2a. However, it finally fail in achieving an
equilibrium grasp under ¥ > 2a, as shown in Fig.3.
Hereafter, assuming i > 2a, we focus on an alterns-
tive algorithm apart from the direct grasp. Due to
the fact that any direct grasp results in failure under
i > 2a , the alternative algorithm begins by rotating
the object around the corner b. Suppose that F; is
assigned as a pushing finger at a, and F; as a sup-
porting finger at b. We first introduce an idea of com-
bined frictional cone. Suppose that a triangle object
. i8 rotating in the counterclockwise direction around &
as shown in Fig.2 (c). During this phase, we can re-
gard that the object is supported by three fingers, F,
F;, and a virtual finger equivalently produced by the
table. Therefore, at the corner b, we can assign two
friction cones whose normal vectors are expressed by
n,; and 1n;, respectively, We note that the two fric-
tion cones can be combined into a much larger cone
which includes not only the two original cones but the
cone between them [17]. We now consider whether
the force-moment equilibrium (hereafter simply equi-
librium) condition exists during the rotating motion or
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not. If we can see this condition, then a quasi-static
based rotating motion is guaranteed. Otherwise, the
object may either slide away from the fingers or fall
down on the table. Now, we need a definition before
introducing & sufficient condition for achieving an-ob-
ject rotating motion.

Definition 1: A set of vectors positively span R if any
vector in R* can be written as & positive combination
of the given vectors, £ A\jv;, where A; > 0 and v; is a
given vector.

‘We recall an important theorem for achieving an equi-
librium by three contact forces. A necessary and suf-
ficient condition for the ezistence of three nonzero
contact forces, not all of them being parallel, which
achieve equilibrium is that there exist three forces in
the friction cones at the coniact points which positivély,
span the plane and whose lines of action intersect at
some point [17]. This theorem brings to the following
extension form. A necessary and sufficient condition
for achieving an eguilibrium for a triangle in rotat-
ing motion around b is that f,, f,, and f, positively
span the plane and lines of action intersect at some
point, where f,, f,, and f, are the gravitational force,
the pushing force by Fy, and the force from the table,
respectively. The condition for realizing & counter-
clockwise rotating motion is naturally given as follows.
The condition for achieving a counterclockwise rotat-
ing motion is to impart a contact force fa satisfying
my = (rs—13) X 1 +(rg —7s) X f, > 0, where 7,
Ty and r, denote the position vectors expressing a, b,
and the center of gravity, respectively, and x denotes
the vector product performing € X ¥ = z1y2 — Za2¥1,
for two vectors z = (x1, ;)7 and y = (y1,¥2)7. Now,
let us introduce a convenient theorem providing & suf-
ficient condition for making rotation. By imperting
the normal directional force at a, we can ahways find
f1 making my > 0 under /2 > v, irrespective of the
coefficient of friction at the contact point (16]. This
theorem guarantees that by increasing the normal di-
rectional force, the object necessarily starts to rotate
in the counterclockwise direction when my > 0. Let
us now define, positive span margin and critical state
as follows.

Definition 2: The positive span margin v is defined by
the angle between n; and r,. When v = 0, we call the
eritical state.

Under v = 0, fy, f; and f, can no more positively
span the plane. We note that both equilibrium and
rotating conditions are achieved even under friction-
less condition, if the pushing force is applied to the
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Fig.4: A procedure for caputuring a triangle

normal direction. Therefore, under 7/2 > ¥ > 0 and
7 > 0, we can always achieve either rotating an object
or keeping the orientation at an arbitrary rotating an-
gle, irrespective of the contact friction. For an exact
discussion, we rotate the object up to -y = £ as shown
in Fig.4 (a), where &'is & positive small value satis-
fying a > &. We note that since @ > £ = v > 1,
the table can produce the contact force resulting in
the equilibrium without making any slipping motion
at b as shown in Fig.4 (a) even though F is removed.
We also note that the object still starts to rotate in
clockwise direction if F; is removed. Under such a
condition, F} can be removed and placed in a position
close to s;. Then, F; pushes the object in anticlock-
wise direction until the center of gravity passes the
line which is perpendicular to the table and passes b.
At this moment, the object starts to rotate in the an-
ticlockwise direction and is away from F, since the
equilibrium condition can no more be satisfied. How-
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ever, the rotating motion of object is blocked by F.
Consequently, the object results in another equilib-
rium state if the position of F; is carefully chosen to
keep £ > |ya|. In the next step, we place F5 on s; as
shown in Fig.4 (c) and, then, two fingers are simul-
taneously lifted up by keeping the distance between
both finger tips. By such & lifting motion, the sys-
tem will result in another equilibrium grasp as shown
in Fig.4 (d). Thus, two planar fingers are sufficient
for achieving an equilibrium grasp unless the contact
friction is not zero. .

[Theorem 1] Suppose an ideslized 2D triangle object
whose corner angles are less than rectangle. Also sup-
pose that each contact friction is not zero. A necessary
and sufficient number of planar fingers for achieving
on eguilibrium is two.

[Proof] Necessity: Under the assumption of finger tip
contact, it is impossible to grasp an object by a sin-
gle finger alone, which means that two fingers are at
least necessary for achieving an equilibrium grasp ir-
respective of either a 2D or a 3D problem. Thus, the
necessary number of fingers is two. Sufficiency: It is
obvious from the discussions given so far. a

4 In case of 3D problem

In this chapter, we extend the discussion to a poly-
hedral convex cone. We define the plane II; which
is perpendicular to the table and includes the center
of gravity, as shown in Fig.5 (a). For simplifying the
discussions, we add the following assumptions.

Assumption 8: Finger tip can apply a pushing force
at the edge as shown in Fig.5(a).

Assumption 9: Each edge contacting with the table
can support & moment whose axis is perpendic-
ular to the table. So, any rotational slip around
the axis is avoided. '

Assumption 8 does not make any barrier for practi
cal application, because the rotating motion can be
achieved by the finger tip unless the finger tip has a
needle shape.

Now, suppose that a pushing force f, is applied at
o 8s shown in Fig.6 (a). Equivalently, this force pro-
duces moments m; and my, as shown in Fig.6 (b), in
addition to the force f,. While m; contributes to ro- -
tating the object around the line bd, m2 may bring
a rotating slip around the axis perpendicular to the
table. With assumption 9, we assume to avoid such a
slip.
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Fig.5: A procedure for the pendulum grasp
[Theorem 2] Let Aa't/d be the triangle constructed by

the intersection between a polyhedral convez cone and

the plane I1;. Suppose that the top angle of the triangle
is less than rectangle. The necessary and sufficient
number of spatial fingers for achieving an equilibrium
is two.

[Proof] Since the necessity is obvious, we only discuss
the sufficiency. Under these assumptions given, & ro-
tating motion can be achieved by two spatial fingers as
shown in Fig.5 (b). Since the center of gravity exists
within the triangle Aa'b'¢, the problem finally results

in the same one taken for a 2D triangular object if we_

replace Aa't/ ¢ to Aabe in Fig.2. This means that we
can achieve an equilibrium grasp by using two spatial
‘ u}

fingers. This proves the theorem.

A sufficient area for placing Fi and. F, is given by
II; N S, where S denotes the object surface where we
place the finger. It is interesting to note that the ob-
ject posture as shown in Fig.5 (d) is the one in which

Fig.6: f, at a produces f; and two moment compo-
nents at o

an equilibrium grasp can be achieved by simply lifting
up both F; and F, with keeping the distance between
them. As a result, the grasps as shown in Fig.5 (e)
and (f) will be obtained. If the center of gravity is
lower than the contact points, as shown in Fig.5 (e),
the grasp system becomes stable for a small rotation of
object around the axis connecting two contact points.
This is because the moment produced by the gravite-
tional force in Fig.5 (e) always makes a restoring one
for the disturbance. However; if the center of gravity
is Jocated upper than the contact points as shown in
Fig.5 (f), the system becomes unstable just like an in-
verted pendulum. Therefore, a sufficient condition for
achieving a stable behavior in the plane perpendicular
to 11, is to place each finger tip at II; NS N H, where
H denotes the area upper than the center of gravity in
z axis. We call this type of grasp the pendulum grasp
in the sense that the object can swing in 2D plane.

~ 5 Conclusion
‘We considered a necessary and sufficient number of fin-

gers for achieving an equilibrium grasp for pyramidal-

like objects. We proved that two planar fingers are
necessary and sufficient for achieving an equilibrium
grasp for a 2D triangle object. We also proved that
two spatial fingers can grasp & pyramidal-like object
in an equilibrium state.

Finally, the authors would like to express their sincere
thanks to Mr. K. Okimoto, a master course student
and Mr. N. Kanayama, Ph.D student at Hiroshima
University, for drawing all figures and typing sen-
tences.

Appendix : Grasp experiment

Fig.7 shows the continuous photos in capturing a 3D

- pyramidal object, where two finger units of Hiroshima
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Hand {12] are utilized for this particular experiment.



Fig.7: Continuous photos in capturing a pyramidal
object
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