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Abstract

This paper proposes a new method for dynamic con-
trol of redundant manipulators via artificial potential
field approach (APFA). The proposed method is based
on the APFA with a combination of a time scale trans-
formation and a time base generator which works as a
time scale compressor and can control the dynamic be-
havior of the robot without any change of the form of
the designed controller itself. The effectiveness of the
proposed method is verified by computer simulations
for a three-joint planar manipulator,

1 Introduction

In the Artificial Potential Field Approach (APFA)
[1]-[4], the goal is represented by an artificial attrac-
tive potential field and the obstacles by corresponding
repulsive fields, so that the trajectory to the target
can be generated via a flow-line tracking process with
consideration to the obstacle avoidance. This method
is often used for the trajectory generation problem of
robots because of its simplicity and lower computation
than other methods using global information about
the task space. However, little attention has been paid
to control the dynamic bebavior of the generated tra-
jectories such as movement time from the initial posi-
tion to the goal and velocity profile of the generated
trajectory. Although one of the most crucial winning
features of the APFA is real-time applicability, it is
difficult to use the generated trajectory for the control
of the robots in real time.

For the disadvantage of the APFA mentioned
above, H. Hashimoto et al. [4] proposed a method us-
ing an electrostatic potential field and a sliding mode
that can regulate the movement time but not the dy-
namic behavior of a robot. T. Tsuji et al. [5][6] pro-
posed a method introducing the Time Base Generator
(TBG) into the APFA which can regulate the move-
ment time and also the velocity profile of the robot,
but can not be applied to the dynamic control.

On the other hand, J.M.Hollerbach [7] developed
the trajectory time-scaling method for the torque lim-
ited path following problem of the manipulator. The
method can lead the end-effector to the goal along
the given path by modifying the movement speed. M.,
Sampei and K. Furuta [8] showed that the stability
of a system is preserved for any time scale transfor-
mation as long as the defined new time never goes
backward against the actual time. More recently, Y.
Tanaka et.al. [9] has developed the trajectory genera-
tion method for the dynamic control of robots based
on the APFA with a combination of time scale trans-
formation and TBG. Then, they applied it to the dy-
namic control of a holonomic mobile robot.

In this paper, we propose a new trajectory genera-
tion method for the dynamic control of redundant ma-
nipulators using Tanaka’s method [9]. The redundant
manipulator has a desirable feature that may lead to
more dexterity and versatility of the robot motions, for
instance, avoiding obstacles or singular configurations
when performing a given task [10]-[12]. The present
method can control the spatio-temporal trajectories of
the end-effector with significant advantages of redun-
dancy.

This paper is organized as follows: Section II for-
mulates dynamics of a redundant manipulator. Sec-
tion III points out the general problems of the APFA.
Then, the new trajectory generation method based on
the APFA is explained in detail in Section IV. Finally,
the effectiveness of the proposed method is shown from
computer simlations with the dynamic model of the
redundant manipulator in Section V.

2 Dynamics of manipulators

The joint space motion equation of an n-degree-of-
freedom manipulator whose end-effector is operating -
in the m-dimensional task space can be expressed as

M(q)q+h(q,q)+g(q) =T, (1)



where g € R™ is the joint angle vector, M(q) € R"*"
is the non-singular inertia matrix {hereafter denoted
by M), h(q,q) € R™ is the Coliolies and centrifugal
force term, g(gq) € R is the gravity term, and = €
®™ is the joint torque vector. On the other hand,
the dynamics of the end-effector can be written in the
operational space as [12]

M (q)& +hi(q,9)+9.(q)=F, (2)

where ® € W™ is the current end-effector posi-
tion, F € R™ is the end-effector force vector,
M,(q) = (JM1JT)"! € R™*™ is the operational
space kinetic energy matrix (hereafter denoted by

M,), J € ER”""" is the Jacobian matrix, and also

z(q, g =J" Ma.q) = M. Jq, g.(q) = T g(q),
= (M. JM T,

When a manipulator possesses extra degree-of-
freedom to execute a given task, i.e. m < n, the joint
torque of redundant manipulators can be decomposed
into two elements; the joint torque Tegector € R to
operate the end-effector, and the joint torque Tjoins €
R™ to control the additional freedom of joint motion
with redundancy of a manipulator. The force/torque
relationship between the joint torque 7 gecior and the
operational force F is given by

T effector = JTF . (3)

On the other hand, the joint torque 7 j,in: always sat-
isfies the following condition [12] given by

jTTjoéni =0. (4)

This equation implies that the joint torque 7 j5in; must
lay in the null space associated with the matrix J T 50
as not to produce any acceleration at the end-effector,
The general solution 7 jein; for this condition given by

Tioint = Gr* 3 (5)

where 7* is an arb1trary n-dimensional vector, and

G =1-JT3" ¢ gnxn, Consequently, the total
joint torque 7 for a redundant manipulator can be
recomposed of (3) and (5) as follows:

T = Teffector + Tjoim

JTF +Gr* . (6)

In this paper, we design the feedback control law
F and 7*, respectively. The total joint torque com-
posed of those designed controllers allows a redundant
manipulator to perform a given task by utilizing arm
redundancy efficiently.

3 Artificial Potential Field Approach

In this section, we attempt to design the feedback
control laws F' in order to lead the end-effector to the

target position and 7* in order to control the extra

joint motion of redundant manipulators.

Here, we can define the potential function with
quadratic form Vegecior to derive the feedback con-
troller F as follows:

1, . l.po .
‘/;ﬁcctarz Q(m “w)TKl(w —:B)+§ TK?“’: (7)

where x* denotes the target position of the end-
effector, and K; =diag.(k{,k},- -, k%) under k¥ >
0 (i =1,2). When we design the feedback control law
F based on the potential function V,gector as

F = -M.K;' {Ki\(z—2")+&} + he(q,4) + g,<q(> ,)
8
the time-derivative of Vegecior yields

Vefector = —[l2l? <0, )

with the dynamic equation (2). V,ﬁr,'c,o, is always non-
increasing except at the equilibrium point. It follows
that the end-effector can reach the target position by
the joint torque 7 egector €quivalent to the derived con-
trol law F given in (8). For a redundant manipula-
tor, however, the joints continue to move although the
end-effector arrived at the target position since the de- -
signed controller F' can not control the extra freedom
of joint motion directly. For this problem in redun-
dancy, we apply the null space on the force/torque
transformation to control the internal motion.

* Here, we define the potential function Vi, i in order
to desxgn the feedback controller r* as

Vioint = ~2—q"‘Mq +5(1)Q(q) , (10)

where £(t) is a positive and non-increasing continuous
function, ie. £(t) < 0, and Q(q) is a differentiable
potential function. The first term on the right side of
equation (10) is used in order to dampen the redun-
dant joint motion when the end-effector arrives at the
goal, and the second one is used to realize the desired
posture of the manipulator g* corresponding to the
minimum/maximum of the potential function Q(q).
If we design the feedback control law = based on the
potential function Vjoi.,. as

. 0Q
==4+9(a)-st) 5> (11)
t]_le time-derivative of Vjgin: yields

Viow = —IlalP +4(8) Q@) <0,  (12)



with the joint space motion equation (1) and &(t) < 0
in the actual time scale. Selecting the designed con-
troller 7 (11) as T*, we can obtain the joint torque
Tjoint t0 control the internal motion without altering
the generating trajectory of the end-effector.

With the total feedback control law = given in (6)
composed of the designed controller F (8) and 7* (11)
, the end-effector can be reached the target position
and also the desired posture through an optimization
procedure of the potential function Q(q).

Moreover, substituting (8) into (2), we can derive
the following linear damped system:

g+ K'e+ K;'K{ (xz—2*)=0. (13)

Obviously, the system in the operational space (2) is
asymptotically stable to the equilibrium point =* by
the designed feedback controller F given in (8). Fol-
lowing the above discussion, we can conclude that it
is impossible to regulate the convergence time and the
dynamic behavior of the end-effector as hoped [5].

4 APFA with Time Scaling

Generally, the stability and dynamic property of
systems has no change in any time scale that is a
strictly monotone increasing function with respect to
the actual time [8]. This indicates that we can design
the feedback control law to converge the original sys-
tem to the equilibrium point at finite time t; as long
as the asymptotic stabilizer for the system in the new
time scale where infinite time corresponds to ¢ in the
actual time is found.

In this section, we present a detail of the proposed
method based on the APFA combined with the time
scale transformation.

4.1 Virtual time s and TBG

The relationship between actual time ¢ and virtual
time s is given by

2 =aft), (14)

where the continuous function a(t), called the time
scale function [8], is defined as follows:

-t
a(t) = ~p; (15)

where p is a positive constant and £(f) is a non-
increasing function called the Time Base Generator

(TBG) [5](6] generates a bell-shaped velocity profile
satisfying £(0) = 1 and £(¢f) = O with the convergence
time t5. The dynamics of ¢ is defined as follows:

= —y(¢(1 - §)), (16)

where v and 5 is a positive constant under 0 < 8 <
1.0. The convergence time ¢ can be calculated with
the gamma function I'( * ) as

Y [ TPA-5)
u=f = [ %= 07

From (14) and (15), the virtual time s can be rep-
resented with respect to € as follows:

s= Lt a(t) dt = —plné(t) . (18)

It is obvious that the virtual time s given in (18) never
goes backward against the actual time ¢. We take
this virtual time s as a new time scale in time scale
transformation.

4.2 Time Scaling of the System

We can rewrite the two dynamic equations in the
joint space (1) and in the operational space (2) into
the following linear system with the state variable Z =
(z,q,%,9)7 as:

d . o I o F,
a2 = (22)7+(3)(7)
where 0 € RM+P)X(m+n) ig the zero matrix and I €
FmAn)x(m+n) i5 the unit matrix. Then
Fi=M;'{F - (ho(q,9) +9.(@)} ., (20

=M r - (Mg, +g(@)} .  (21)
The system given in (19) can be rewritten in the
virtual time scale s as follows:

w = ()n(f)E) @

where
W=(¢1)7/)2:¢31¢4) =(m’q"(;%t—)-,gzlt—)_)T’ (23)
d 1\, 1
Fs:t—i;(m)x+mf‘t’ (24)
d 1 . 1
'1',=;i-; (a'(—t)')Q‘F ;—(-t—)-fn . (25)

As previously defined in the relationship between ac-
tual time and virtual time, stability of the new system
given in (22) is the same as the original system in the
actual time [8]. Hence, there exists a feedback control
law to stabilize the new system asymptotically.



4.3 Design the feedback control law

In this subsection, we design the feedback control
law with the APFA to stabilize the new system given
in {22) in the virtual time scale.

We can define the potential function with quadratic

form V;g,ect o for the control of the end-effector in the

virtual time scale as follows:

1
Viheor = 510 T K (85 —th1) + 5957 Kt -

(26)

If we design the feedback controller F; based on
V;%'ector as

Fo =Ky {Ki(¢;, —¥7) + 3}, (27)

. . ri
the derivative of ¥ effector

with respect to s yields
d v
ds Veﬁectar = —“stﬂ <0. (28)

S

By inverse trausformnation of time scale from the vir-

tual time s to the actual time t for the controller F,
with (22) and (24), the controller F in the actual time
is derived as

Fi =~} (K5 Kz — %) {“(t)K; - :2%} =
- (29)

From (20) and (29), we can obtain the feedback control
law F¥ for control of the dynamic behavior of the end-
“effector as follows: o

F*=M,F: + h.(q,@4)+g.(q). (30)

The end-cffector can be controlled to the target posi-
tion at the convergence time ¢; by means of the joint
tOrque T egector equivalent to the feedback control law
FY given in (30).

On the other hand, we can define the potential func-
tion V%, to derive the feedback controller 7, as

V= ST Kot +C0QGE), (1)

where K3 = diag.(k}, %3, -+, k3) under k3 > 0,
@s(%») is the differentiable potential function in the
virtual time scale, and {(s) is a positive non-increasing
scalar function. The derivative of V;’fw with respect
to s yields

d 9@, , d
&“Vifivtt = ‘!”4T{K373+ C(S)E%}’*' C(S) Qs(¢2) .

Tds
(32)

If we define the feedback controller , under consid-
eration that the scalar function ¢(s) is non-increasing
in the new time scale as

ro =Ky {w., +¢(s) ij;} . (33)

Equation (32) can be calculated as

Ve = Il + S (0)Qu(2) <0 (34

This indicates that the potential function Vj‘,’:’,-m is sta~-
bilized to the equilibrium point by means of the feed-
back controller 7, in the virtual time scale.

Here, we define the non-increasing function ((s) as

(s)=aec™ ¥ . (35)

Through inverse time-scale transformation from the
virtual time to the actual time for the controller =,
with (22) and (25), the feedback control law 7, in the
actual time is derived as

~ L a9, 19Q
= -—{a<t>K3 - a—(t-)-}q~ (K G2,

(36)
where « is a positive constant. From (21) and (36),
we can derive the following feedback controller 7% as

¥ = Mr, + h(q,q) +9(q) . (37)

When the joint torque 7% (37) is selected as 7*, we
can obtain the joint torque Tjoims (5) to control the
internal motion of the redundant manipulator in the
actual time scale. , :

The total feedback control law = (6) composed of
the designed controller given in (30) and (37) can lead
the end-effector to the target position at the specified
time ¢; and can also attain the desired posture without
altering the configuration of the end-effector.

4.4 Dynamic behavior of the end-effector

In this subsection, the dynamic behavior of the end-
effector controlled by the feedback controller designed
in 4.2 is analyzed. To simplify the discussion, the
target position for the end-effector is set at the origin
in the operational space. Substituting the feedback
control law F¥ given in (30) into the original linear

system equation (19), we have the following differential
equation as:

. 2 . -
& = —p? (g) K;'K; z+ {(p— 1)%'!‘%}3 . (38)
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Figure 1: Changes of the generated end-effector trajectories with different positive functions @;(q)

Here, we first analyze the behavior of the end-effector
on the z coordinate. From (38), the following Euler’s
equation with respect to x and & can be derived as:

dr Kkt
E""%—(z’—i)fd—gwtépzw =0. (39

Since the non-increasing function £ converges to zero
at finite time ¢, the necessary and sufficient condition
to converge z, & and & to zero at the specified time t;
is given with respect to the discriminant of the char-
acteristic polynomial D, = 4%} ~ 1 as follows:

(1)if D, >0 then p > 4(1-7),
(2)if Da<0 then p > —L=8)

1-+=D;
The dynamic behavior of the other state variables can
be analyzed in the same manner.

It can be proven that the feedback controller F¥
can regulate the dynamic behavior of the end-effector
and the convergence time to reach the goal,

5 Computer simulations

The proposed trajectory generation method is ap-
_plied to a redundant manipulator. Figure 1 shows
the simulation results with a three-joint-planar ma-
nipulator. The initial posture of the manipulator
is g(0) = (m,—3%,~Z2)7T [rad], and the target posi-
tion of the end-effector is * = (0.0,1.5)7 [m] with
the convergence time t; = 5.0 [s] under p = 8.0,
a = 1.0. The gain matrices K; (i = 1,2,3) are set
at K = diag.(0.25,0.25) [N/m}, K, =diag.(1.0,1.0)
[Ns/m], and K3= diag.(1.0,1.0,1.0) [Nm/(rad/s)], re-
spectively. We used the Appel method for the manip-
ulator dynamics {13] and the link parameters of the
manipulator as shown in Table 1.

Table 1: Link parameters of the manipulator

{ink 1 link 2 link 3
length [m} 1.0 1.5 05
mass {kg} 0.8 - 12 04
center of mass {m] 04 0.6 .25
moment of incrtia tkgm?} | 0.06666 0,22500 0.00833

Figure 1 (a) shows the generated trajectory with
the potential function Q(q) set at

Qi(g)=0. (40)

On the other hand, the joint angle control of the first
joint and maximization of the manipulability [11} is -
considered as a subtask in Fig.1 (b) and (c). In these
cases, the potential functions Q(q) are given as

Q) = s@-a@?, (@)

Qs(q) =. VdetJJT, (42)

where the target angle of the first joint ¢} is specified
as g = % [rad]. |

It can be seen that the generated trajectories are
influenced by the corresponding potential functions
Q(q) defined above. In Fig.1 (a), we can observe that
the third joint of the manipulator is outstretched while
the end-effector reaches the target position. v

In contrast, the end-effector reaches the target po-
sition without any singular configurations by utiliz-
ing the redundancy control of the manipulator corre-
sponding to locall optimization of the potential func-
tions Q(q) in Fig.1 (b) and (c).

Figure 2 shows the time history of the end-effector
position @ and velocity &, and the squared sum of
the joint angular velocity. It should be noticed that
all generated trajectories of the end-effector in Fig.1
completely coincides with the one smooth trajectory
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Figure 2: Time histories of the end-effector position,
velocity and squared sum of joint velocities

depicted in Fig.2 (a). We can see that the end-effector
reached the target position and that the joints of the
manipulator do not move any longer after the specified
time ty = 5.0[s] in all cases.

6 Conclusions

In this paper, the new trajectory generation method

for the dynamic model of redundant manipulators us-
ing the concept of the APFA and the time scaling
transformation has been presented. We have devel-
oped the control strategy for the redundant manipu-
lators that allow achievement of performance with its
redundancy. In simulation results with the three joint
planar manipulator, the effectiveness of the proposed
method was ascertained.
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