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Abstract

The paper deals with the rotational stability of a rigid
body under the constant internal forces. For this prob-
lem, first, the stiffness tensor is constructed and its
basic properties are analyzed. The internal force pa-
ramelerization is done with the use of the virtual link-
age/spring model. Within this parameterization, neces-
sary and sufficient conditions of stability are oblained
in the analytical form. In the space of the internal
forces they form a region given by intersection of a
plane and a singular quadric. Since the stability con-
ditions guarantee only positive definiteness of the stiff-
ness tensor, the contact friction is taken into sccount
separately. In this paper analysis of the unilateral con-
straints is done under a study case, where achieving
stable grasp of a convez object, with the stretching in-
ternal forces created by friction, is studied in an ana-
lytical example.

1 Introduction

One of the fundamental problems in controlling
multi-fingered hands is stability of the resulting grasp.
In recent years, the problem has been add from
different points of view and a number of approaches
to defining the grasping stability, its robustness, and
relation to such concepts as grasping form and force
closure, has been proposed in literature. A very good
survey on this topic can be found in {1]. Here in this
gger we address the problem in a somewhat simpli-

way, dealing only with the rotational stability of
the object.

Basically, the total compliance of the multi-finger
system has two sources. The first one is due to compli-
ance of the finger itself, and the second one is due to
the contact force interaction between the finger and the
object. The Cartesian compliance of the fingers is sym-
metric and positive definite (and therefore stable} as
long as the joint compliance matrix is stable. The com-

liance due to the interaction depends on the contact
orce distribution, and is often the source of graspin,
instability. This phenomena has been discovered an
studied in [2-4]. It should be noted that a very similar
subject—stability due to internal forces in mechanisms
with closed kinematic chains—was analyzed in [5,6].

One possible approach to provide stable grasping is
to design the total compliance matrix to be positive
definite. Theoretically this approach can work nicely.
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However, it is case-dependent approach and there is
no systematic procedure for adjustinixt]he compliance
of the ﬁn%ers to that of the object. Amother possible
solution of the stability problem is based on decompo-
sition of the total compliance and designing the corre-
sponding matrices s:lparately. Indeed, if thgoare‘ both
stable than the resulting compliance will be sta-
ble. Conceptually, this approach is taken in this paper,
and in our work we do not consider the compliance of
the fingers at all. In so doing, we consider the grasp to
be stable if its stiffness matrix is not negative greﬁnite.
The reason for taking this view is simple—even if the
contact force induced compliance is positive semidef-
inite, the resulting compliance of the system can be
easily made stable with simple proportional control of
the fingers’ joints.

Our work was motivated mainly by papers {7], where
fundamental properties of the Er stiffness matrix
were under investigation, and yas[g}, where the ro-
tational stability of the grasped object was analyzed
from the classical standpoints of the Lyapunov’s theory.
However, the relation of the stability to the internal
force distribution has not been studied in detail, and
necessary and sufficient conditions of stability have not
been obtained in the analytical form. In our work we
want to fill the gap between the two cited papers. An-
other papers that are worth noting in this introduction
are [9], where the geometric properties of the object
has been brought into the stability analysis, and [10],
where gravitational effects in the stability problem has
been investigated.

This %aper is organized as follows. Firstly, in Sec-
tion 2 the analytical expression for the stiffness ten-
sor is derived and its basic properties are discussed.
Force pgtmmizgtiqn‘ for the ex.o-ca.:ilecl{I virtual lmké

e/spring m is given in Section 3. Necessary an
:ggcient conditions g;' positive definiteness of the stiff-
ness tensor are derived in Section 4. Combination of
the stability conditions with unilateral constraints on
the normal reaction forces is studied on an analytical
example in Section 5. Finally, conclusions are presented
in Section 6.

2 Stiffness Tensor

Let us consider a rigid body subjected to multiple
frictional contacts. Assume that the constant forces
F1. 525+ -s Fn are applied at the points defined by the
radius-vectors p,, ps, - . - , P, drawn from the center of



mass O. Gravity is ignored since only the internal
forces are studied in this paper. The body is at the
equilibrium so the static equations read Y .., f; =
0, Y i,pxf;=0. Let8@=2etan¥ be the vector
of the finite rotation of the body [11]. Here, e defines
the axis of rotation, and x stands for the rotation angle.
The coordinates of the contact points after rotation of
the body, p;(8), are defined by the Rodriguez’ equation
for the finite rotation:

1 1
p;i(8) = p; + 1166 Ox(p;+50xp). (1)

Since the contact forces are assumed to be constant,
calculating the potential energy leads to the following
expression:

id 1 1

= - ;f}”{p;(ﬁ’) -p}=3 15166 67K, (2)
where n
K=Y (pTf) - pifi @)

=1

is the stiffness tensor. The potential energy is always
positive (and the equilibrium is stable) as long as K
is positive definite. Note that for the small rotation
@ the potential energy is transformed to the familiar
quadratic form. Also note that in the planar case the
rotational stiffness is a scalargivenby K = Y1, pT f..

The following properties of the stiffness tensor can
be formulated straight away, First, K is symmetric as
long as the object is at equilibrium. Indeed, one can
prove that K — K™ = Q(}°7., p; X f;), and, therefore,
the skew-symmetric part of K is always zero by the
static equations. Here, §2 is the skew-symmetric oper-
ator such that 2(a) - b = a x b. If, however, the object
is not at equilibrium, K is always asymmetric.

Next, even though K is symmetric at the equilib-
rium, it is not always and not necessarily positive defi-
nite. It is only in some simple cases when the judgment
on the positive definiteness of K can be done from the
structure of the stiffness tensor (3). Consider, for ex-
ample, the case when all the applied forces are coplanar
to the correspondent vectors p;. In this case f; = kip;,
and formula (3) gives K = Yo, ki{(pTp:)I — p;pT}.
As can be seen, K has the structure of the inertia ten-
sor of a system of Foints built on the vectors p;, with k;
playing the role of masses. Therefore, if all k; > 0, i.e.,
all the forces are stretching, K is positive definite and
the equilibrium is stable. In the opposite case when all
k; < 0, i.e., all the forces are compressive, K is negative
definite and the equilibrium is unstable.

However, in the general case when k; have different
signs or if the applied forces f; are not coplanar to p;,
it is not that easy to to make a judgment on the proper-
ties of K without its direct computing, and additional
study of the force structure is required.

Finally, please note that the forces we deal with in
this paper are assumed to be constant in the inertial
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frame. If they are constant in the body frame, we can
show that in such a case they do not contribute to the
stiffness tensor as long as the body is in the equilib-
rium.

3 Force Parameterization

To relate the stability properties to the structure
of the applied forces one should make the force de-
composition and obtain an analytical solution of the
static equations. The valid solution can be based on
the pseudo-inversion of the grasp matrix. Introducing
the block vector f = {f],-.., fn}", We can rewrite the
static equations in the féllowing orm: B, f = 0, where

I ... I
Qp1) - Qpy)

The general solution of the statics equations can be
represented as f = Py, where P; = I — B B, is the
orthogonal projector onto the null space of the grasp
matrix B,, i.e., onto the space of the internal forces,
and it does not depend on the reference point p,. Here,
¢ = {¢],...,0T}" is composed of the arbitrary spec-
ified vectors ;.

Note that ¢ defines redundant representation of the
internal forces and does not have clear physical mean-
ing. To introduce physically meanin parameteri-
zation of the internal forces, let us, following to [12],
characterize the interaction between any two fingers by

oy = (ri —r;)"(fi = ;) (5)

i.e., by the difference of the contact forces projected
along the line joining the two contact points. The in-
teraction force is of compression type if a;; < 0, and of
tension type if a;; > 0. The physical meaning of a;; is
the work produced by f;; = f; — f; on the displace-
ment ri; = p; — py.

Note that the dimension of a;;, [N - m], can also be
interpreted as that of the rotational stiffness. Con-
tinuing this thought, we could have introduced an-
other possible parameterization of the internal forces
by &;j = ai; /(r];Ti;), where &;; are the stiffness of the
linear virtual s‘)ring connecting the two contact points.
It is remarkable that in this interpretation the grasp
of the rigid body can be represented by the virtual
springs which can have as positive as weﬁ as negative
stiffness. It should also be noted that this interpreta-
tion is closed conceptually to the virtual linkage model
considered in [13]. In the forthcoming analysis, for the
sake of simplicity of the resultin matiematical expres-
sions, we, however, will deal with the parameterization
given by (5).

In the non-redundant, minimal representation of the
internal forces, for which there exists one-to-one map-
ging between the applied forces f and the vector com-

ined of @, and «, the solution of the static equations

is specified as
f = Plaa’ (6)

B,= - 4)




where Pj, € R2"*(2n-3) in the planar case, and
P, € 3372} jn the spatial case. Note that
nf{n—1

a = {ajj} € 3T Equating the dimension of o
to the column-dimension of Pj,, one obtains the num-
bers of the contact points admissible for the minimal
representation. They are n = 2 or n = 3 in the planar
case, and n = 3 or n = 4 in the spatial case.

To obtain an analytical expression for the matrix
Pj.., one must represent (5) in the matrix form so that

a = A,(ri;)f. This representation depends on how the -

elements of a are ordered. Upon constructing A,, we
can prove that the matrix P, can be expressed in the
following form:

Pro = A} = AJ(A.A7) 7 )

This formula and the representation (6) also remain
true for n < 7, i.e., even though parameterization of
the internal forces in terms of & becomes redundant.
It, however, still keeps the advantage of having clear
physical meaning, and is by no means worse than the
parameterization by ¢.

4 Analysis of Stability

Let us now consider stability due to the internal
forces. To facilitate mathematical description of the
forthcoming analysis and to cover the general case of
n contact points, we will use another description for
* the elements o;; of the vector a. Namely, it will be
assumed that they are somehow ordered and can be
addressed by only one subscript. The same rule will
be kept for the correspondent vectors r;; and f;;. The
use of single indexed variables will be marked by bar
sign, i.e., & will correspond to some element a;;.

We start the analysis with considering the planar
case. First, by direct summing up all a;; as given by
(5), we arrive at the following remarkable formula

1 N
K:;Z&g, (8)

=]l

where N = n(n - 1)/2 is dimension of the vector a.

Hence, for the planar case the condition of YIv; &; > 0
is necessary and sufficient for stability under the inter-

nal forces.
Next, coming to the spatial case, we represent the

internal forces as f = A}a and substitute them into
(3). After simplification we obtain

N
K = B{(FTr)I - 777}, (9

i=1

where elements of the vector 8 = {f1,...,8n§}" are
related to the components of the vector a by 8 =
(A,AZ) ‘. As can be easily seen, K has the struc-
ture of the inertia tensor of a system of points built
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on the vectors #;, with f; playing the role of masses.
Hence, N linear with respect to &; conditions of §; > 0
would be sufficient to guarantee that the matrix K is
not negative definite. As will be shown below, they can
be reduced to just two conditions—one linear and the
other one quadratic—imposed on the elements of a.
At first, we will show that A, = LYV &; is valid
eigenvalue of the matrix K. Indeed, computing the
determinant of the matrix K — A\ I, we get

N
det(K — M I) =det(D_BiFFT).  (10)
i=1

By the generalized Lagrange identity [14] we have

N N
det(Z Bﬁ";i"}') = -é Z B;ﬁi,‘,ék (det{i‘,-fz‘g?ﬂ])’. {11)
F=53 1

i,j,k=1

However, by construction of the virtual spring model,
every three vectors 7;,¥;, 7, there are linearly depen-
dent. Hence, det(K —A;I) = 0 and ), is the eigenvalue
of K;. Thus, the condition Zix @; > 0 is also neces-
sary for stability in the spatial case.

to the other two eigenvalues of K, we note that
trK = 2),, and therefore

2 ?
where v(a) = det K/} is a quadratic form of c. The
stability is guaranteed if v = a™Tya > 0. Now, the
remaining part of the analysis is to define the ma-
trix I'y. Note here that 4 can be also represented
in terms of variables 8, ie., as v = BTI'zB. We
can define elements of I's with the use of the unit
coefficients method, i.e., by computing det K and X;
with the vectors 8 = {0,...,0,1,0,...,0}" and 8 =
{s,...,0,1,0,...,0,1,0,...,0}7. Skipping all the in-
termediate calculations, we can show that

_fo ifi=j
{Ts}i; = { (i x 7;)7(Fs x 7;) otherwise  (13)

(12)

Az 3 =

1t is interesting that the geometric meaning of the off-
diagonal elements of I's is that {T'g}i; = S7;/4, where
S;; is the area of the triangle built on the vectors #; and
;. Note that T is singular sign-indefinite form. We
can show that in the space of variable B this quadric is

represented by a cone.
ow, having defined I'g we can return to I'y. Taking

into account the relation between a and 3, we obtain
o= (AOA:‘)‘Irﬁ(AaA:)»l (14)

Finally, recalling the relation between o and f, we can
formulate the second stability condition in terms of the
internal forces f. It reads

fTATTR(AG)f 20 (15)

This completes our analysis.



Figure 1: Example of three-fingered grasp.

5 Stability Under Unilateral
Constraints: A Study Case

Let us consider an example of %i:asping of ellipse
by a three-fingered hand. To simplify the forthcom-
ing analysis, we assume symmetrical placement of
the second and third contact points on the object as
shown in Fif' 1. Under this assumption, the contact
points are defined as follows: p; = {0,-b}",p, =
{acosy,bsiny}”, p; = {—acosip,bsiny}™, where the
grasFing angle —7/2 < ¥ < w/2, and a and b are
the lengths of the semiaxes of the ellipse. The above-
made simplification will allow us to obtain analyti-
cal exiressions for the rotational stiffness and con-
duct the stability analysis in analytical form. The
pormal contact forces, directed along the inward nor-
mals, are defined as follows: f,, = f,{0,1}", f,, =
fa{~bcosy, —asiny}™, f5, = fh{bcosy, —asiny}",

where f2 = fn/A(¥), and A(¥)=v/a? sin® ¢ + b2 cos? .
Defining clockwise (for the 2nd force) and counter
clockwise (for the 3rd force) tangential vectors, we
specify the friction forces in the following form:
e = (0,00 15 = ff{asing,—boosy)T, f =
fi{—asiny,—bcosy}", where the normalized tangen-
tial force f; = fi/A(¥).

Under the above-specified contact forces the moment
balance and the force balance for the horizontal axis
are always satisfied. The static equation for the force
balance for the vertical axis reads

fy=2frasiny + 2f bcosy. (16)

Next, we should introduce the unilateral constraints
on the normal forces f, > 0 and f, > 0. Under these

constraints the equilibrium region in the plane fi/fn, ¥
is defined as

ftlfa 2 wy(¥) = —asiny/bcosy, (17

with f;/fn = p,(3) defining the line of zero internal
force fy. Finally, the Coulomb friction constraints

~pie < fel fn < ey (18)

are taken into consideration. Here, . stands for the
friction coefficient.
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Figure 2: Normalized rotational stiffness.

Having specified the contact points and the contact
forces, we calculate the rotational stiffness

K = —bf, — 2abf;; + 2(a® — b*)sin¢pcosif;. (19)

Since f, > 0 and f, > 0, the rotational stiffness is not
gositive if the object is sphere (a == b) or if there is no
iction forces.
To proceed further with the stability analysis, we
substitute (16) into (19) and represent

= —2ab(1+sin ) fa+2 cos Y {sin Y(a®~b*)—b%} f; (20)

as a function of three variables f;, f7, and ¢. We, how-
ever, can inspect basic features of this function by plot-
ting, for some fixed values of a and b, the normalized
(with respect to the normal force) stiffness K = K/ f,
as a function of the grasping angle ¥ and the normal-
ized friction force fj ff,,. As can be seen from Fig. 2,
it is a sign-indefinite function having a saddle point in
the origin.

Let us define the parameters of the grasp under which
the eguﬂibrium is stable. To facilitate the analysis we
introduce the following function:

_ ab(l + sinv)
wl¥) = e = B — B

(21)

Note that f;/ f, = p,(¢) defines the so-called zero stiff-
ness line in the plane f;/f,,v¥, which is the zero level

curve of the surface K (f./ fn, V).
Let us firstly examine the case of ¥ < 0. It follows

from (17) that f; > 0 must be held for keeping the equi-
librium., However, in this case (a? — b*)siny < b® for
any values of a and b, and formula (20) give us negative
stiffness. Next, consider the case of a < band ¢+ > 0.

Here we have (a® — b*)siny < b%. It follows from
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<

Figure 3: Stable equilibrium: a > v2b.

| NIK >0
i

(19) that f; < O must be held. Combining (17)
with the condition of K > 0 we get g, < fi/fn <
4s. As can be easily shown, this double inequality
does not have solutions unless (a® — b%)siny > b?,
which is impossible under the given choice of param-

eters. For the case of b < a < v/2b and ¥ > 0 we have
(a® — b*)siny < b2, It follows from (1%) that f; > 0
al

must be held for attaining stability. This, however,
leads to negative stiffness in (20). ! these cases
the stability area and the area of possible equilibriums
have no intersection.

Finally, we consider the case of a > v2b and ¢ > 0.
Here f; > 0 is necessary for K to be positive, and
this efiminates from consideration the grasping angles
for which (a® — b%)siny < b*. Thus, we have shown
that stability of the grasp can be attained if the follow-
ing restrictions on the shape of the object and on the
grasping angle are imposed:

a>V2b & > arcsinb?f(a®-b%). (22)

Taking into account the Coulomb friction constraints
(18), the stability region in the plane f;/fn,% under
conditions (22) is defined by the following double in-

equality
ss(P) < firl fn < ey (23)
which can be called as the task stability cone. The sta-
bility region is shown in Fig. 3. Note that from equation
(¥} = p. we can estimate the minimum and the max-
imum grasping angles for a given friction coefficient 4.
and for a given object shape a, b.
As can be seen from Fig. 3, if the friction coefficient

is small enough so that u. < u,(%) for all ¥ in the re-
gion (22), the stable equilibrium is unreachable. Thus,
minimum of u, (1) sets the critical value of the friction
coefficient, ficrir. Solving equation du,(¥)/dy = 0, we
can show that this minimum is attained under the fol-
lowing critical grasping angle:

2. 5%
~1+/ %5y (24)

sin Yeriy = )
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Figure 4: Internal forces: a > v6b.

It is interesting to see how the shape of the ellipse af-
fects these critical values. To this end we introduce
dimensionless parameter z = b/a. It can be shown
that pey: is monotonic function of 2 on the interval
0 < z € 1/V/2. Tt goes to infinity as z — 1/V?2, ie.,
Yerit = 7/2. In the other limiting case of z —+ 0, when
a > b, tciy — 0, Le., no friction is necessary. Here we
have sin tere = (—1 + v/5)/2. It is remarkable that in
this case the ¥ coordinate of the 2nd and 3rd contact
points divides the semiaxis b of the ellipse in the golden
section ratio (1 +v/5)/2, and the z coordinate of those
points divides the semiaxis @ in square of the golden
section ratio. It is shown in Fig. 6.

Having completed the stability analysis, let us now
see the behavior of the internal forces. In the case
under study we have a2 = ag; due to the sym-
metry of the 2nd and 3rd contact points. Hence,
K = 023 + 2a13. Direct calculation by (5) gives
ass = 4acosy(fasiny — fabcosy), a1z = ax3/4 —
3b(1 +siny) f, /2. To analyze the internal forces in the
region of stability, we introduce the following functions:
po3(tp) = beosyfasing, w2(¥) = ab(l +siny)(1 +
sin 2¢0) /(cos ¥{sin ¥(a® — 3%?) — 3b%}), defining the lines
of zero internal forces in the plane fi/ fa, ¥.

First, it can be shown that if ¥ > 0 then u,(¢¥) >
p23(¢), and therefore as > 0 in the stability re-
gion. Thus, in stable grasp 2nd and 3rd forces produce
stretching internal force, and, intuitively, this is well
comprehended. Also intuitively, it does not seem likely
to achieve stable grasping with all the internal forces
being of stretching type*. However, as it is shown be-
low, this first-glance impression is wrong.

Indeed, for the case of (a® — 3b%)siny < 3b% the
condition f;/fn < pi12(¢) is not consistent with the
statics constraint fi/fn > py(¥). Thus, a2 < 0 and
the corresponding internal force is of compressive type.

*This is because of the unilateral character of constraints im-
on the contact forces, which makes an essential difference
tween multi-finger and, say, parallel mechanism manipulations.
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Figure 5: Friction and stability cones.

However, in the case of

a>v6b & > arcsin3b?/(a® - 3b%) (25)

c12 becomes positive and all the internal forces are
stretching ones. The region of the all-positive inter-
nal forces is shown in Fig. 4. Note that accessibility of
this region is defined by the friction coefficient higher
than the one necessary for just attaining stability.

Finally, we would like to make some comments on the
practical force distribution scheme. In the context of
the study under consideration it means finding such a
normal force that the resulting grasp would be stable.
Assuming that ¢ is fixed, the acceptable normalized
friction force is defined by the stability cone (23). It is
shown in Fig. 5, where -, and ~, are the angles corre-
sponding to u. and u,. Reaching any boundaries of this
cone is equally undesirable since they define the sliding
line and the critical stability line. In this situation, the
most simple solution is to put

fel fn = (1 (¥) + )/ 2, (26)

i.e., to set it on the middle line (dashed line in Fig. 5) of
the stability cone. Now, with f; { fn being fixed, we can
choose the normal reaction f,, from prespecified value
of the desired stiffness K ges. It defines

_ Kdes )‘(1/’)
fo= ~ab(1+sin )+ p. cos p{(a® — b?) sin ¢ — b} @

as a function of the grasping angle, the desired rota-
tional stiffness, and the friction coefficient.

As to the optimal choice of the ig;;asping angle, the
value of Yeri is a good candidate. Indeed, due to pos-
sible errors in realization of the force control schemes,
it is reasonable to set interval (23) as large as possible.
And this corresponds to setting such 3 that fgivtas min-
imum to p,(4¥), i.e, ¥ = Yerie. Grasping configurations
corresponding to . are shown in Fig. 6.

6 Conclusions

The problem of stability of a grasp under the in-
‘ternal force loading has been addressed in this paper.
The potential function of the system has been derived,
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Figure 6: Optimal grasping configurations.

and the structure of the stiffness tensor has been repre-
sented through the contact force decomposition. Nec-
essary and sufficient conditions for a stable grasp under
internal forces has been derived. Combination of the
stability conditions with unilateral constraints on the
n;action forces has been studied on an analytical exam-
ple.
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