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Abstract

This paper proposes an adaplive regulalor using
neural network. For a conirolled object with linear
and nonlinear uncertainties, the conventional opiimal
regulator is designed based on a known linear part of
the controlled object and the uncertainties included in
the controlled object are identified using the neural net-
work. At the same time, the neural network adaptively
compensates a control input from the predesigned op-
timal regulator. In this paper, first, we show how the
oulput of the neural network compensates the control
inpul based on the Riccati egquation, and a sufficient
condition of the local asymplotic stability is derived us-
ing the Lyapunov stability technique. Then, the pro-
posed regulator is applied to the torgue conirel of a
flexible beam. Ezperimental resulls under the proposed
regulator are compared with the conventional optimal
regulator in order to illusirate the effectiveness and
applicability of the proposed method.

1 Introduction
The optimal regulator is usually designed for a
mathematical model of a controlled object. However,

the mathematical model is not exactly known in prac-

tical application of the optimal regulator. For the
controlled object with linear uncertainties, a research
of a robust optimal regulator has been conducted [1].
It should be noted that the robust optimal regulator
cannot work well if the nonlinear uncertainties of the
controlled object exists.

For this problem, various regulators using neural
networks have been proposed in recent years. Ya-

mada and Yabuta [2] proposed a learning controller -

based on a direct neural control approach and used
the cost function of the conventional optimal regula-
tion for the neural network training. Also, they dis-
cussed the stability of the linear discrete-time SISO
(Single Input-Single Output) controlled plant [3]. Al-
though this type of the controller is very simple and
can be applied to various feedback control system, the
uncertainty of the controlled plant cannot be identified
and some parameters included in the neural network
is quite difficult to be set. On the other hand, Taka-
hashi [4] used an adaptive neural identifier and the
direct neural controller [2] for controlling a flexible
arm. The neural identifier can identify the parame-
ters of the arm and the neural controller can work on
the basis of the identified parameters. Polycarpou and
Helmicki [5] presented a learning approach for auto-
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mated fault detection and accommodation. Their sys-
tem can detect plant’s fault and can adjust the plant
behavior using multiple neural networks. Rovithakis
and Christodoulou [6] linearized an unknown nonlin-
ear dynamic system and used three neural networks
for making direct adaptive regulator. In these pro-
posed methods, the unknown part of the controlled
object is identified by one neural network, and other
neural network are used as the compensator. Since
the multiple neural networks must be trained, it re-
quires a long time for computation and learning, and
the stability analysis becomes difficult.

Generally, the controlled object includes a known
part and an unknown part, and the unknown part can
deal with linear and nonlinear uncertainties. So, it is
necessary that efficient regulator design utilizes such
information of the controlled object.

In this paper, an adaptive regulator using a neural
network for a class of dynamic system with uncertain-
ties is proposed. The proposed method designs an op-
timal regulator for the linear known part and uses the
neural network to identify the unknown part included
in the controlled object. At the same time, the neural
network works as an adaptive compensator for the un-
known part of the controlled object. In this paper, we
show how the output of the neural network compen-
sates the control input based on the Riccati equation
and derive a sufficient condition of the local asymp-
totic stability using the Lyapunov stability technique.
Then the proposed regulator is applied to the torque
control of a flexible beam. Experimental results under
the proposed regulator are compared with the conven-
tional optimal regulator in order to illustrate the effec-
tiveness and applicability of the proposed regulator.

2 Adaptive Regulator Using Neural
Network

2.1 Problem Formulation
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As a controlled object, we consider the following
system that consists of linear and nonlinear part:

£(t) (1)
y(t) )
where z(t) € R*X!, u(t) € R™¥! and y(t) € R

are the state, the input and the output, respectively;
Ap € R*™*" B € R**™ C € R*" are the parame-

Apz(t) + A(z(t)) + Bu(t),
Cz(t),

il

i



ter matrices; and A(-) is the nonlinear function of the
state z(t).

The goal of the control is to find the optimal input
;hat minimizes the quadratic performance index of the
orm

J= ]o “ET Q) + T ORD),  (3)

where Q € R**" > 0, R € R™X™ > { are the weight
matrices specified by the designer. The nonlinear reg-
ulator problem for the system (1) is very difficult and
is generally solved using one of the linearized tech-
niques that synthesizes an observer and a linear opti-
mal regulator. However, there is many control prob-
lems where (1) cannot be linearized appropriately, so
that the nonlinear compensation is particularly re-
quired. In this paper, we propose the adaptive reg-
ulator using a neural network with excellent capabili-
ties of nonlinear mapping, learning ability and parallel
computations,

2.2 Optimal Regulator for the Linearized
System

First, we divide the matrix Af = Af, + A4, of (1)
into the known parameter matrix Ay, € R**® and
the uncertainties matrix Ay € R**" and assume
that the nonlinear function A(z(t)) is approximately
described as

A(z(t)) = A"z(t) + Aa-2z() (4)

near the operating point of the controlled system.
Here, A* € R™*" represents the linearized parameter
and A« € R™*? represents the unknown linearized
modelling error. -

Then the system (1) becomes

i) = Az(t)+ Bu(t), )
A = An+AA) (6)
An = Apa+ A% @)

where Aq = Aa, + Age. A and A, € R are
respectively the system uncertainty and the nominal
parameter. Also Az, and Ay, € R™**" are the known
part of the parameter Ay and the parameter uncer-
tainty. The system (5) is assumed to be controllable
and observable. The optimal control input u*(t) that
minirmizes the performance index J of (3) is given as

(8

where P € R**" is the unique solution of the Riccati
equation (7]

u*(t) = —~R™1BT Pz(t),

PA+ATP-PBR'BTP+Q=0. (9)
Here the solution P is assumed as
P=P,+Ap, (10)
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where P, € R"*™, Ap € R™*™ are respectively the

solution for the known linear part of the system (5)

and the compensatory solution of the Riccati equation.
Substituting (6), (10) into (9), we have

(Pn + AP)(An + AA) + (An + AA)T(pn + Ap)

—(Pa+4p)BR'BT(Pa+Ap)+Q=0. (11)

If the quadratic uncertainties, ApAg4, AﬁAp, ApAp
are sufficiently small, (11) can be divided into the fol-
lowing two equations:

PaAn+ ATP, — P,BR™'BTP, + Q = 0,12)
ApAn+ PaAs +ATP, + ATAp .
~ApBR™'BTP, ~ P,BR™'BTAp = 0. (13)

Then, substituting the solution P, of (12) into (13),
we can approximately have

Ap = ©Ay,, (14)

where © € R**" represents the transformation matrix
(See appendix A). ‘
In order to compute the optimal control input u*(¢)
of (8), the matrix P is necessary. Although F, can be
obtained from (12), the uncertainty A4 is unknown
and we cannot determine the compensatory solution
Ap. Therefore, the neural network is introduced for
solving the problem.
2.3 Proposed Regulator Scheme
Figure 1 shows the scheme of the adaptive neural
regulator. The identification system shown by the bro-
ken line in Fig. 1 is described as

Z(t) = Anz(t) + Bu(t) + zyn(t), (15)

where Z(t) € ®*%! and znn(t) € R"*! are the pre-
dicted state of the identification system and the out-
put of the neural network, respectively.

Substituting (10), (14) into (8), we have the opti-
mal control input u*(t) as

u*(t) = —Knz(t) - Ax(Aaz(t)), (18)
K, R'BTP,, (17
Ak R™'BTe, (18)

*nv(®) TNetwork
Neural
%39« 0
L_E.i{
X1 A)=Axn+AG0)
X u(®) +Bu(: 0]

(K}

Figure 1: Block diagram of the adaptive neural regu-
lator



Figure 2: Three-layer neural network

where K,, € R™*"*, Ag € R™*" are respectively the
feedback gain and the compensatory gain. The iden-
tified state error e(t) € R"*! between the predicted
state Z(¢) and the state z(t) is defined as.

e(t) = E(t) - z(2). (19)

Then, the neural network is trained by minimizing
the energy function E(t) = 1/2[eT (t)e()]. If E(t) be-
comes zero, the predicted state Z() agrees with the
state z(¢). In other words, the output zyn(f) of
the neural network agrees with the state uncertainties

Az{t) = Aaz(t), that is,
ENN(t) = Az(1).

Substituting (20) into (16), we can get the optimal
input rewritten as

u"(t) = ~Knz(t) — Axznn(t).

(20)

(21)

After training the neural network, the control input
shown in Fig. 1 must be close to the optimal control
input.
2.4 Neural Network and Learning Algo-
rithm

A multi-layer neural network used in the proposed
regulator is shown in Fig. 2. The numbers of the units
of the input layer, the hidden layer and the output
layer are n, p and n, respectively. In Fig. 2, w;; repre-
sents the weight that connects the unit j of the input
layer to the unit i of the hidden layer; vg; represents
the weight that connects the unit { of the hidden layer
to the unit k of the output layer. The weight matrices
are represented as W(t) € RP*™ and V(¢) € R**?,
respectively. Also, the input and output vectors of
the neural network are represented as z(t), zyn(t),
respectively.

Let the unit j’s output of the input layer be I; =
z;{t) (j = 1,---,n), the unit #’s output of the hidden

layer be H; = o(s;), s = 35 wi;I; , where the sig-

moid function ¢(-) is defined as o(u) = ;ly-tanh('yy).

Here, 4 is the positive parameter related with the
shape of the sigmoid function. Fig. 3 shows the
input-output relation of the sigmoid function. When
¥ < 0.1, the o(u) can be approximated by the linear
function, and when ¥ > 1, the () takes the form of
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Figure 3: Sigmoid function used neural network

the tanh function. Also, let the unit k’s output of the
output layer be Oy = o(&x), K2 = ) 1= Vi Hi.

For the neural network’s training process, the en-
ergy function E(f) is rewritten as

Bt = égmm — (0] = ‘3‘2} &.  (22)

In the training process, the energy function is mini-
mized by changing the weights w;; and vg;. Accord-
ing to the back-propagation algorithm [8}, the weight
updating rules can be described as

vt + At) = () -9 aav i(g), (23)
wii{t+ At) = we;(t)-ngz%%. (24)

where > 0 is the learning rate, At is the time interval
of the network learning.

By using (15), (19), (21) and (22), SE(t)/8vk(t)
can be written as

OE() . 05,
Bui(t) q; &(t) Bv:g(t)
n P "
- ; (0 57 /0 zyw, (T)dr

m t n
—zbqh/ ZAKM’:NN:(T)dT}
h=1 0 1=
n n

dznn, (1)
Zzgeseq(t)—gi?@"s

g=1s=1

a8
(1- Z?:l bvixAKa.g)m‘fg%{)‘ {g=19)

(25)
Cqs = {

where a4, k., boa, Ak,, are the elements of the
matrices A,, Kn, B, Ay, respectively. The partial

- Yhe1 banBk, 5%%7 (g # ),
- (26)
¢ .
Si(t) =/ zxw,(r)dr, (27)
0



derivative 85;(t)/8znn,(t) can be approximated as
aS;(t) ASi{(t)
dznn(t)  Dznn(t)

If the znwn,(t) is only changed by the difference
Aznn,(t), the variation AS;(t) of S;(t) becomes

(28)

Ny
[Z N, (JAL)AL + Azyn, (H)AL]
ji=0
Ny
=Y zvnm(iAt,)AtL,,
i=0 ’
Az yn, (DAL, (29)
Therefore, we can approximate 85:(t)/dznn,(t) as
follows:
asi(t)
azNN.'(t)

where At, is the small sampling time and ¢ = N;At,.
Substituting (30) into {26) gives

(1 ";:;1 bthKr.,)Ats

AS(t) =

=~ Al,, (30)

(g=39)

G ™ { = 2oh=1 banl K, A, (¢ #s). €39
From (23), we have
TR
=1 s=1 H
,, (32)

Also, the updating rule (24) reduces to the following
form

wij (t + AL) = wi(t) — ’?ZZQ’Q@%’%%Q'
g=1 s=1 H (33)

2.5 Stability Analysis

This section deals with the local asymptotic sta-
bility for the system (5) near the optimal set of the
weights of the peural network. If the multi-layer neu-
ral network is used, there exists the optimal set of the
weights that makes the identified error &(t) zero [9].
Near the optimal set of the weights, the neural net-
work’s output zyx(t) can be approximately linearized

® zun(t) ~ VT OW (), (34)

where ¢ > O represents the gradient of the sigmoid
function.

From (5), (15) and (34), the identified error (19) is
described by

€@ = [ Uhnr(s) + Bulr) + 2n(r) = Ana(?)
—Bu(r) — A gz(r)ldr

= @) /O 2(rydr, (35)

o) = VTOWE - A (39)

233

Flexible beam

| CPU
Intel Pentium
90 MHz

Figure 4: Experimental setup for torque control of a
flexible beam

where ®(t) € R"*" is defined as the parameter error.
- According to Fig. 1, if the identified error ¢(t) can
be asymptotically stabilized, the asymptotic stabil-
ity of the proposed regulator can also be guaranteed.
Since the controlled system is assumed to be control-
lable, the system state z(t) is bounded. In order to
assure stability of the identified error, the stability of
the parameter error ®(t) should be guaranteed.

We consider a Lyapunov function ¥(t) of the fol-
lowing form

W(t) = [cs®(t)]T cs®(2), (37)

where cs®(t) is the expanded form of the column of
the matrix ®(¢). The difference Ag of the Lyapunov
function ¥(¢) is defined as

Ay = Ut + At) - U(2).

If Ay < 0, the asymptotic stability of the proposed
regulator can be guaranteed by the Lyapunov’s stabil-
ity method.

When the neural network is trained sufficiently un-
til the identified error becomes zero, the sufficient con-
dition of the local asymptotic stability is that the
learning rate 7 is chosen as

pr/(L+p2) >n>0,

where py, po are the robust margins depended on the
weights of the neural network (Proof: see appendix
B)

(38)

(39)

Since the small learning rate 7 satisfying the con-
dition (39) can be chosen easily, the stability of the
proposed regulator can be also guaranteed.

3 Application to Torque Control of a

flexible Beam

In this section, our goal is to control the joint torque
according to the reference torque of the flexible beam
contacted with the object as shown in the Fig. 4. The
contact point between the flexible beam and the ob-
ject can be detected by active motion of the joint [10].
So, if the joint torque can be controlled, the force ap-
plied to the object may also be controlled. However, .
the characteristics of the flexible beam are nonlinearly
changed depending on material and shape of the beam,



a contact force, a frictional force and so on. Also, since
the beam’s stiffness of the joint is varied with the dis-
tance between the joint and the contact point on the
object, it is very difficult to obtain the exact dynamic
model of the flexible beam [10] . In this section, the
Adaptive Neural Regulator (ANR) is applied to the
torque control of the flexible beam in order to illus-
trate the effectiveness and applicability of the ANR.

3.1 Experimental Device

An experimental device for the torque conmtrol is
shown in Fig. 4 [11]. The beam is steel, 0.32 m in
length, and 0.5 mm 1n diameter. The torque sensor is
made of a semiconductor gauge put on an aluminum
sheet. When the beam contacts with a fixed object,
the torque 7 of the beam joint can be measured by
the torque sensor. The actuator is velocity-controlled
with the reference angular velocity of the beam. It
should be noted that a driving torque of the actuator
cannot be controlled directly. The experimental device
includes various nonlinear and unknown uncertainties.

3.2 PFormulation

First, the reference angular velocity 94 can be con-
sidered as the input to the flexible beam, so the trans-

fer function from &4 to the measured torque 7 of the
joint can be approximately described by [11]

KK, bo

Hn(s) = s(Tys +1) = S tas

(40)

where by = (K,K3)/Ty, a1 = 1/Ty. K, is the gain,
K is the elastic constant of the beam, and T} is the
time constant of the velocity controlled system.

Here, let the rectangular reference value be denoted
as r(t). The control error is defined as e(t) = r(t) —
7{(t). From (40) we have the following state equation

EIREESIE IR
(41)
wo=bo o 2 ] (42)

where z1(t) = e(t), z2(t) = é(¢). Then the quadratic
performance index is defined as :

J= /Ot! =T (®)Q=z(t) + v (t) Ru(t)]dt, (43)

whete t; — oo is the final control time.

In order to identify the parameters of (41), §42),
the beam is fixed at the point of L = 0.20 m from
the joint. Using the rectangular reference angular ve-

locity 84 with the amplitude of 2.0 x 10~* rad/s and
the period of 0.5 s, the joint torque is measured (sam-
pling frequency: 100 Hz). The measured results are
shown in Fig. 5 as the fine line. On the other hand,
the response of the identified model with the param-
eters a;=69.3 and b;=8.24 is shown as the thick line.
From the Fig. 5, we can see that the error between
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L=032m

e L=020m o
0.3

Joint torque [x 10"Nm]

Figure 5: Responses of the flexible beam and the iden-
tified parameters

the responses of the identified model and the flexible
beam increases with control time.

With the same experimental device, the fixed posi-
tion L of the beam is changed. The measured result is
too shown in the Fig. 5: the dashed line represents the
result with L = 0.32 m, and the dotted line represents
the result with L = 0.12 m. When the position L is
changed, the joint torque is largely changed and quite
different from the response of the identified model with
the parameters of L = 0.20 m.

3.3 Experimental Result

The Linear Quadratic Regulator (LQR) is designed
using the weight matrices
| -

(See (43)). The solution P, of the Riccati equation,
the transformation matrix ©, the feedback gain K,

and the compensatory gain Ag are respectively given
as follows:

4 0
0 0

Q= [ = 0.5,

p o= | P P2 |_[98144 1414
T lpa p22 | | 1414 0.049 |°

o= 0 62| _ | =002 =749
T 83 6221 ] 6941 319 1§

Kn=R'BTP, =2[py pal, (44)

Ax = R7BTO = 2[6,; 65]. (45)
From (16) the optimal input u”(¢) can be calculated
as

u™(t) —2[(p2121(t) + p22z2(t))

+(021zN N, + O222nN,)] (46)

where rnn, represents the ith output of the neural
network.

In the experiments, two units in the input layer,
eight units in the hidden layer and two units in the
output layer are used. The initial value of the weight
is chosen as an uniform random number in [~1.0 x
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Figure 6: Experimental results of the torque control

10~3, 4+1.0 x 10~3], the learning rate is 7=0.5, and the
parameter v of the sigmoid function is y=1.

In the control system, the reference value is a rect-
angular signal where the amplitude is 2.0 x 107° Nm,
the period is 5 s, and the control time is 210 s. The
proposed regulator (ANR) is applied to six kinds of
the contact location of L = 0.12m, 0.16 m, 0.20 m,
0.24 m, 0.28 m, 0.32 m. Note that the same linear
model (41), (42) is used with the parameters identi-
fied for L = 0.20 m.

Figure 6 shows the experimental results that cor-
respond to L = 0.20 m, 0.12 m, 0.32 m, where the
fine lines represent the results under the LQR, the
thick lines represent the results under the ANR. In
Fig. 6(a), since the same contact location L is used
for identifying the linear model, the experimental re-
sults obtained with the use of the LQR and the ANR
are not largely different. However, when L is changed
(Fig. 6(b), (<)), the LQR results significant overshoot
or undershoot. The ANR with the linear model of
L = 0.20 m always produces stable responses.
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Figure 8: Identification system of the flexible beam

Figure 7 shows the mean squared error &
L [29 22(t)dt between 200 s and 210 s. In Fig. 7,
the black and white circles represent the results of the
ANR and the LQR, respectively. Note that the errors
corresponding to the ANR are shown by their mean
values and the standard deviations. These errors are
calculated for 10 different initial values of the weights.
From the result of the ANR, it can be concluded that
even if there is large error between the identified pa-
rameters and real parameters of the flexible beam, the
stable response is always obtained.

When the identified error becomes zero by the
training of the neural network, the state Z(¢) of the
identification system shown in Fig. 8 should agree with
the state z(t) of the torque control system. Fig. 9
shows the measured and identified torque for the in-
put with the amplitude of 2.0 x 10~ Nm and the
period of 5 s (L = 0.32 m). The measured result is
shown as the fine line and the output of the identifi-

‘cation system is shown as the thick line. Comparing

the fine and thick lines, we can see that the two lines
are almost the same.

4 Conclusions

In this paper, the adaptive neural regulator is pro-
posed. In the proposed regulator scheme, the neural
network can identify the unknown part of the con-
trolled system and compensate the control input from
the LQR simultaneously. By the training process of
the neural network, the control input can be adap-
tively modified and the identification system is auto-
matically organized. If the learning rate is suitably
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Figure 9: Responses of the Identification system and
the flexible beam

chosen, the stability of the proposed regulator scheme
can be guaranteed. Also, the experimental results of

the torque control for the flexible beam illustrate the

effectiveness and applicability of the proposed regula-
tor.

In order to improve the performance of the con-
trol system using the neural network, this paper has
concentrated on the control structure of the system.
Future research will be diverted to the other way to

- improve the control performance, that is revision of
the neural network model using a radial basis func-
tion network [13] and so on.

Appendix A:

First, from (13) we have

ApD+FAp = AP, +P,Ax, (47)
D = BR'BTP,-A, (48)
F = P,BR'BT -4, (49)

Expanding the both side of (47) leads to the linear
equation of the following form

HiesAp =T,e5M,4,

1 5% =®T®In+fn ®}‘,
=L QPT+ 1, Q) P,

% represents the Kronecker product, I, € R**" is
the unit matrix.

When II; is assumed to be a non-singular matrix,
¢s Ap can be described as

(50)

where

csAp = IesAgy, (51)

I 1031 0% (52)

Here, the elements A, ; of the uncertainties A4 for
J(=1,2,.--,n) are assumed to be equal, we have

Ap = OAy, (53)

where © € R**" is the transformation matrix.
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Appendix B:

From the error back-propagation algorithm, the
weight updating rules (32), (33) can be rewritten by
the matrix form ‘

V(t) - ’?g‘g’g‘%:

54
WO - a9
where [9E()/0V(1)] € R*2, [DE()/0W ()] € o

are the matrices, elements of which are the second
terms of (32), (33), respectively. Also we can see

dE(t) _ OE(t) { 83(t) r 8z ()
V() ~ 9z(t) {dznn(t) avi) -

By (19) we have

R = a0 - =060 - =)
e(t) e Rroxi, (57)

Moreover, from (15) and (21} we can easily lead

V(t+ At)

i

Wt + At)

(56)

i) = /0 A, = BEJo()dr + AQ),  (58)

A(t) \/;[In - BAK]xNN(T)dT

YRTRSWENE 2N (59)

so that 9%(t)/0zyn(t) and dzNn(t)/BV(E) can be
represented as {12}

2(t)

—

BA()

32:NN(t) 3$Nﬁ(i) e R XI’ (60)
dxnn(t) _ [&cngx t) . dznn, (t)]T
vy — tav() ' T oav()
e jIxp, (61)

By (34), near the optimal set of the weights,
Bznn(t)/3V(t) reduces to

dznn(t)

av{E) eH" (W),

(62)

where H = [10---0:01---0:-..700---1)T € R""x1 i
the vector that the [( — 1)n + i]th elements are 1 and
all other elements are 0.

Consequently, (56) becomes

g.g% = Tv(t), (63)
Tv(t) = oe()TT()HT (1)WT (t) € R™*? (64)
T(t) — 55%%5 nlea (65)



and the weight updating rule (54) can be written as
V{t+ At) = V(t) = nTv(1). (66)

Also, the weight updating rule (55) can be approxi-
mately presented by

Wi+ Ay~ W) - nTw(t), (67)

Tw(t) = VT ()= (1) Q L)L) (1)) € RP*".

Then, from (66) and (67) we can obtain the follow-

ing form
VTt + AW (t + At)

v VI®W(t) — nQ1(2) + 7°Q2(2), (68)

Qu(t) TLOWEO + V() Tw(t), (69)

Q) = YL(O)Yw() (70)

From (36), (68), ®(t + At) can be described as

~

B(t+Al) = oVT(t+A)W(t+At)— Ay
| ~  B(t) - neQa(?), (71)
Qa(t) = Qui(t) —nQa(t), (72)
and by (37) ¥(¢ + At) can be given as
Yt +A) = [es®®) es®(t) + (n0) s
—2n0lcsQa(t)]Tcs®(t),  (73)

where pg = [csQa(t)]T csQs(t) = 2!Q3(t)!§2- Qs ()l
represents the matrix norm of Qs(i).

From (38), (73), the difference Ag can be derived
as

Ay = —ne{2esQs(t)]T cs®(t) + neps}-
When the difference Ag < 0, the asymptotic stability

of the parameter error ®(t) can be guaranteed. So, by
(72), (74) we can derive the following condition:

ps{[ch;(t)]T - n(chg(t)}T}csd*(t) >n>0, (75)

s = 2/{0ps).

(74)

Setting

P1 = PsP3, P2 = Ps5P4

ps = [esQu(t)]" es®(t),

Py = {CSQz(t)]TCSQ(t),

and assuming p3 > 0 and pg > —1/ps, or p3 < 0 and
ps < —1/ps, we can obtain the sufficient condition:

p1/(1+p2)>n>0. (76)
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