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Abstract-This paper proposes a Neuro-Based
Optimal Regulator (NBOR) for a class of system

with uncertainties. In this paper, we show how

the neural network output compensates the con-
trol input based on the Riccati equation and how
the compensatory solution of the Riccati equation
is estimated by the least-squares method. Then,
the NBOR is applied to systems with uncertainties
in order to illustrate its effectiveness and applica-
bility.

I. INTRODUCTION

The optimal regulator is usually designed for a mathe-
matical model of a controlled system. However, the math-
ematical model is not exactly known in practical applica-
tion of thé optimal regulator.- For the controlled system
with linear uncertainties, the various kinds of the robust
optimal regulator has been proposed [1]. It should be
noted that the robust optimal regulator cannot work well
if the nonlinear uncertamty of the controlled system exists.

For this problem, various regulators using neural net-
works have been proposed in recent years. Rovithakis
and Christodoulou [2] linearized an unknown nonlinear
dynazmc systemn and used three neural networks for consti-
tuting a direct adaptive regulator. Levin and Narendra [3]
presented a framework for the use of neural networks for
identification and control of nonlinear dynamical systems.
In this framework, an observer and a controller are con-

sisted of neural networks. In the methods described above,

the unknown part of the controlled system is identified by
one neural network, and other neural networks are used
as the regulator. Since the multiple neural networks must
be trained, it requires a long time for computation and
learning.

In this paper, a neuro-based optimal regulator (NBOR)
for a class of dynamic system with uncertainties is pro-
posed. The proposed method designs an optimal regula-
tor for the linear known part and uses a neural network to
identify the unknown part. At the same time, the neural
network works as an adaptive compensator for the un-
known part. First, we show how the neural network out-
put compensates the control input based on the Riccati
equation and how the compensatory solution of the Ric-
cati equation is estimated by theé least-squares method.
Then, computer simulation is performed in order to illus-
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trate the effectiveness and applicability of the NBOR.

II. NEURO-BASED OPTIMAL REGULATOR
A. System Formulation ;
We consider the following controlled system
#t) = Apz(t)+ A(z(t)) + Bu(t), (1)
yt) = Cz(t), @

where z(t) € R*%1, u(t) € £™*! and y(t) € R are the
state, the input and the output, respectively; Ay € 8°%%,
B € ®"*™ C € R'™*" are the parameter matrices; and
A(-) is the nonlinear function of the state z(t).

The goal of the control is to find the optimal input that
minimizes the quadratic performance index of the form:

J= ]‘; ” =T (£)Qz(t) + uT () Ru(t)ldt, 3

where Q € R"%" > 0, R € R™*™ > 0 are the weight ma-

_trices specified by the designer. The nonlinear regulator

problem for the system (1) is very difficult and is approx-
imately solved using one of the linearized techniques that .
synthesizes an observer and the linear optimal regulato:

However, this approach cannot work well when (1) is not
linearized appropriately, so that the nonlinear compensa-
tion is particularly required. In this paper, we propose

the NBOR for solving the control problem.

B.  Optimal Regulator

First, we divide the matrix 47 = AL,, + By, of (1)
into the known parameter matrix Az, € R"*" and the
uncertainties matrix Ay, € R"*" and assume that the

nonlinear function A(z(t)) is approximateiy described as
A(z(t) =~ A'2(t) + Ag-2(t) (4)'

near the operating point of the controlled system. Here,

A* € R™X" represents the linearized parameter and A4 €

R"X7 represents the unknown linearized modeling error. -
Then the system (1) becomes

i(t) = Az(t)+ Bu(t), ®)
.A joed An‘}-AA, . (6}
An = Apa+ 4%, ™



where Ag = Ay, +A4e. Ay and A, € R*” are respec-
tively the system uncertainty and the nominal parameter.
Also Ag, and Ag, € R™*™ are the known part of the pa-
rameter Ay and the parameter uncertainty. The system
(5) is assumed to be controllable and observable.

The optimal control input »*(¢) that minimizes the per-
formance index J of (3) is given as

u*(t) = —R BT Pz(t), (8)

where P € R"*” is the unique solution of the Riccati
equation

PA+ATP-PBR™'BTP+Q=0. 9
Here the solution P is assumed as -
P=PFP,+Ap, (10)

where P, € R*** Ap € R™**" are respectively the solu-

tion for the known linear part of the system (5) and the

compensatory solution of the Riccati equation.
Substituting (6), (10) into (9), we have

(Pa+ Ap)(An + A4) + (An + A4)T(Pa + Ap)

~(Pa+Ap)BR'BT(P,+Ap)+Q=0.  (11)

If the quadratic terms ApA,, A Ap, ApAp are suffi-
ciently small, (11) can be dxvxded into the following two
equations:

PaAn+ ATP, — P,BR'BTP, +Q =0, (12)
ApAn+ Palg+A%5P, + ATAp

~ApBR™*BTP, ~ P,BR'BTAp=0.. (13)

In order to compute the optimal control input u*(t) of (8),
the solution P of the Riccati equation has to be known.
Although P, can be obtained from (12), the compensatory
solution Ap cannot be directly computed from (13) since
A4 18 unknown.

C. Estimation of Compensatory Solution

In this section, we use the least-squares estimation for
the compensatory solution of the Riccati equation. From
{13), we have the following form:

ApD + FAp = ALP, + P,A,, (14)

D =BR'BTP, — Ay, F = P,BR™'BT - AL.
Deriving the quadratic form of the state z(t) for both sides
of (14) yields

F(W)Kz(t) =

AL(t) =
X =

AT (@) Poz(t) + zT (1) PaA(2), (15)
£ 42(t), (16)
ApD + FAp. (17

where A,(t) is the uncertain state occurred by the uncer-
&ainty A A
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Fig. 1: Block diagram of Neuro-Based Optimal Regulator

Developing (15) into a linear equation and arranging
the linear equation due to the unknown compensatory so-
lution Ap, we can obtain

wlt) = At),
8(t) = [B11, -, Inal € RVXL,
w(t) [wi1{t);-- -, wan(t)]e R1X",

(18)
(19)
(20)

it

wen(t) = f:zi(i)dhm (®) +D_ za(t) fiezi(2)

fz=1 F=1

(k,h=1,2,---,n), (21)

M) = 30N A Opsz) + Y Y 2 @)psda(t), (22)

FES R0 F=1 dx=1

where p;;, das, fjx are the elements of the known matrices
FP,, D, F, respectively; ¥J;; is the element of the unknown
vector #(t); and 6(t) = csAp is the expanded form of the
column of the matrix Ap.

With the sampling time step, we can get s(> n?) sets of
the sequential data and have the following matrix equation
from (18).

Q1)o(t) = A1), (23)
A(t) = At = A), - At —san)]T e R, (29)
Q(t) = [wl(t — At),-- -, w(t — sAD)]T € R (25)

If A(t) of (22) is obtained, then 8(t) can be computed by
the least-squares method, that is

B(t) = Q* (A®),

where Q+(t) represents the pseudo inverse matrix.

Consequently, when A(f) of (22) can be obtained, the
compensatory solution Ap can be estimated. However,
Ag(t) included in (22) cannot be computed from (16),
gince A4 is unknown. Therefore the neural network is
introduced for solvigg the problem.

D. NBOR Scheme
Fig. 1 shows the block diagram of the NBOR.. The iden-
tification system shown in Fig. 1 is described as

2(t) = Anz(t) + Bu(t) + znn(t),

(26)

(27)



where Z(t) € %! and zyn(t) € R**! are the predicted
state of the identification system and the output of the
neural network, respectively. A

Substituting (10) into (8), we have the optimal control
input u*(t) as

w'(t) = up(t)+ Aut), (28)
ua(t) = —Knz(t), (29)

K, = R;IB?Pn) (30)
Au(t) = —R'BTApz(t), (31)

where K, € R™*" is the feedback gain of the linear op-
timal regulator. The identified state error e(t) € ®"*!
between Z(t) and z(t) is defined as

t) = B(t)—z(d)
= s ((r)d‘r, (32)
¢(r) = [znn(r) = A(7)], (33)

where ((7) € R7X1 represents the error between the neural
network output and the uncertain state. However, even if
the identified error €(t) becomes zero, the integrand {(r)
of (32) may not be zero. So, we define the energy function
E(t) for training the neural network as

B = 300+ 3 @)
= 3CTEKO + 5 O
= EW(t)+ ED(1), (34)
B = 3¢, (35)
ED(t) = —;-T(t)e(t). (36)

When E(t) becomes zero, the output zxn(t) of the neural
network agrees with the state uncertainties A(t), that is,

zNn(t) = As(1)- (37

We can see that the control input shown in Fig. 1 will be
gradually close to the optimal control input of (8) as the
neural network trains. '

III. NEURAL NETWORK SCHEME

" A multi-layer nenral network used in the proposed reg-
ulator is shown in Fig. 2. The numbers of thé units of
the input layer, the hiddern layer and the output layer are
n, p and n, respectively. In Fig. 2, w;; represents the
- weight that connects the unit j of the input layer to the
unit ¢ of the hidden layer; vi; represents the weight that
connects the unit f of the hidden layer to the unit k of
the output layer. The weight matrices are represented as
W(t) € ®°*" and V(t) € R"XP, respectively. Also, the
input and output vectors of the neural network are repre-
sented as z(t), zxn(t), Fespectively. =
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Fig. 2: Three-layer neural network

Let .the unit j’s output of the input layer be I; =
z;(t) (j = 1,---,n), the unit s output of the hidden
layer be H; = o(s;), 8 = Y_;,wi;I; , where the sigmoid
function o(") is defined as o(u) = tanh(yp). Here, vis
the positive parameter related with the shape of the sig-
moid function. Also, let the unit k’s output of the output
la.yer be O;—': O'(Ick), Kp = Z?:kaiﬂi'

In the training process, the energy function of (34) i
minimized by changing the weights w;; and vy;. According
to the back-propagation algorithm, the weight updating
rules can be described as

‘  raEM (2)
vi(t 4+ Af) = vej(t) —n lif;ét)) 6:91;(?))]’ (38)
SEN(®)  8E®(1)

wii{t 4+ Al) = wy:{t) — + , (39
e+ 60 = wg(t) =0 | e
where 5 > 0 is the learning rate; and At is the time inter-
val of the network learning. The function E()(t) of (34)
for ((t) = é(t) is rewritten as

3w,-j(t)

BO@®) = 27X

= % Z{le"\’q(t) - A, (), ()

=1

where Ty, (1), Az, (t) are respectively the elements of
the neural network output zyn(t) and the uncertain state
AL(1).

By (32), (40), dE()(2)/8v4i(t) becomes

BEONY) _, (om0 |
B~ O oy =4O (0 (6

where €.(t) represents the element of the vector €(t) and
o'(-) represents the derivative of o(-).

Also, 3E(1)(2)/8w;;(t) can be written as

BED®) N, Ozan,(t)
dwy(t) qz::lfg(i) Gy (t)
= &0 (k)vac’(s:)e3(0). ()
g=1



On the other hand, the function E(®)(t) of (34) for the
identified error €(t) is given as -

ED() = LT 0)elt) = £ Y er)) ~ m0F,  (@3)
k=1

[T

and E®(2)/8v.(t) can be described by
der(t) Bznn, (1)
8znn, (1) Buw(t) ’
where ¢;(t) is the element of the vector €(t). The partial
derivative 9¢;(t)/8znn, (t) can be approximated as
Bck(t) o~ Aék(t)
dznn(t)  Azwm ()

If 2N, (t) is changed by Az, (t), the variation Aci(t)
of €x(t) becomes

EDG _ o)

duki(t) (44)

(45)

N,

Acr(t) » Y [enm (7AL) — Ar, (§AL) + Azyw, (1)]AL,

=0

Ne
— Y lenn.(§AL) — As (7AL)]AL,

j=0
= Azyn, (DAL, (46)
Therefore, we can approximate €;(t)/8znn, () as
S¢x (t)
TR0 Aty 47
TN, 3] s ( )

where At, is the small sampling time and t = N;At,.
Substituting (47) into (44) yields

PED(t) dznn, (1)
o) ex(t)At, mavkizt) . (48)
Also, E)(t)/8w;j(t) can be given by
BEAN) dznn,(t)
San(t) ™ Z;l (AL Zo (49)

As a result, the updating rules of (38),' (39) reduce to
the following form

wt-+80) () (1) +amat) 22t
(50)
w488~ wig ()0 3 s hey A1) 28D
‘ =1 Ouwi;(t)
(51)

Since (50) and (51) mean that the error signal for training
the neural network is the weighted sum of e(t) and é(t),
this learning rule is corresponding to the PD control rule

of the feedback control system. Therefore, it is called as
a PD updating rule in this paper. ‘

It should be noted that, if the energy functions of (34)
are modified as

EW(@) = %’T(t)B:e'(t), E®(t) = -12- (@) Kiet) (52)

the PD learning can be adjusted by the learning gains
B; € R"Xn K; € R"X" defined as the positive definite
matrix. '

* V. COMPUTER SIMULATION

In order to show the effectiveness and the applicabil-
ity of the NBOR, we apply the NBOR and the Linear
Quadratic Regulator (LQR) to the following simulation
system with uncertainties:

H) = (An+Ade®)+Bul®)  (53)
W) = Cx(o) (54)
where o
=]} i],AE[ﬁ&; o],
<[3 t]e-13 1]

and the initial state z(0) and the final state z*(t) are

2(0) = [1.0 2.0]7 and z*(t) = [0.0 0.0]7, respectively. The-

weight matrices of the quadratic performance index of (3)
02 ¢

are designed as
.- 05 0
Q‘“"‘[-o 0.2];’1?':[ 0 0.5]'

For Ay, B of (53), the solution P, of the Riccati equ#tion
and the feedback gain K,, are obtained as )

Pn::.{ ],Kg;:[

Oﬁ the other hand, for A, + A4 and B, the solution
P* of the Riccati equation and the@ain K* are given by

| |

The responses of the state z(t) and the output y(t) using
K, and K* are shown in Fig. 3 as the thin line (LQR) and
the dotted line (DRE), respectively, where the reference
signal of the unit step function is used. From Fig. 3, we
can see that the error between the thin line and the dotted
line is not negligible. .

In the NBOR, the four-layer neural network is used.
Corresponding to the system (53), the unit numbers of
the input layer and the output layer are 2, and the unit
number of each hidden layer is 10. The weight initial value
of the neural network is chosen as the uniform random

0.1531 0.1259
0.1259 0.2791

0.0766 0.0630
0.0630 0.1395

0.1855 0.1764

0.0028 00882 | pu_
K=} 01764 0.3634

0.0882 0.1817

.695.



state variable, x «(t)

0 :
0.0 1.0

state vaciable, x (1)

time (s)

(b)

Fig. 3: Comparison of the simulation results
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Fig. 4: The error function during the learning iteration

number in [-0.1, +0.1] and ¥ = 1.0 in the sigmoid function
is used. The learning rate is =0.0005. Also the sampling
time is At = 0.002 s and the contro}l time T=4 s for one
iteration of the reference signal of the unit step function.
The response of the state 2(¢) and the output y(t) during
the 100th learning iteration using the NBOR is shown in
Fig. 3 as the solid line (NBOR). From Fig. 3, the response
~under the NBOR can almost achieve the d&mred response
for the system with uncertainties.

Fig. 4 shows the relationship between the learning it-
eration and the identified error of the NBOR. In order
to evaluate the identified error, the error function E* is
defined as

500

B =) E{[j+500( - 1)]At},

i=t

(55)

where E(:) is defined as (3) and ¢ is the iteration number
of the reference signal. From Fig. 4, the identification
system is approaching the system (53) according to the
learning of the neural network. ‘

The NBOR can adaptively control the controlled sys-
tem with uncertainties, and automatically realize the iden-

0.6

T o4 —
. 02 - Before Learning
(‘;" ~~~~~~~ After Learning

o . : ~ =

£a1)-x22)

(b)
Fig. 5: Identification ability of the proposed method

tification system of the controlled system simulianeously.
Therefore, we also investigate the identification ability of
the NBOR. The error between the state 2(2) of (53) and
the predicted state Z(t) of the identification system using
the neural network after 100 learning iterations is shown
in Fig. 5 as the dotted line.

V. CONCLUSIONS

In this paper, the NBOR is proposed for a class of sys-
tem with uncertainties. In the NBOR scheme, the neural
network can identify the unknown part of the controlled.
system and compensate the control input from the linear
gptimal regulator simultaneously. By the training pro-
cess of the neural network, the control input can be adap-
tively modified and the identification system is automat-
ically realized. In order to illustrate the applicability of
the NBOR, we plan to apply it to a control problem of a
manipulator in future.
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