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Abstract—The present paper proposes a new neu-
ral control scheme that can perform identification and
control for a dynamical system with linear and non-
linear uncertainties. This scheme uses a single neural
network for both the identification and the control.
By the Lyapunov stability technique, stability of the
proposed scheme is analyzed and a sufficient condi-
tion of the local asymptotic stability is derived. Then,
computer simulation is performed in order to illustrate
the effectiveness and the applicability of the proposed
scheme.

I. INTRODUCTION

In recent years, applications of the neural network to
control problems have been intensively conducted [1]~[5].
Yabuta and Yamada [1] proposed the direct neural con-
troller that replaces a feedback controller with a peural
network. Carelli et al. [2] proposed a neural controller us-
ing the feedback error learning. In this method, the neu-
ral network can gradually modify the control input from
the feedback controller and can finally take the place of
the feedback controller. Khalid et al. [3] presented a self-
tuning controller that uses a neural network for regulating
the gains of the feedback controller in order to improve
the performance of the control system. In these methods,
even if the inverse model of the controlled plant can be
obtained by neural network learning, the uncertainties in
the controlled plant cannot be expressed explicitly.

Another approach to the neural control with multiple
neural networks has been shown in [4], [5]. In this ap-
proach, one neural network is dedicated to the forward
model for identifying the uncertainties of the controlled
plant and other neural networks may compensate for the
effect of the uncertainties based on the trained forward
model. However, for real controlled plants, multiple neu-
ral networks must be trained for a long learning time and
stability analysis is quite difficult.

In this paper, a new neural control scheme that can
simultaneously perform identification and control using
only one neural network is proposed. In the proposed
scheme, an identification model is composed of 2 neural
setwork and a linear nominal model which is approxi-
mated for the controlled plant. The neural network can
identify the uncertainties and can adaptively modify the
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control input computed from a predesigned feedback con-
troller at the same time. ~

1. IDENTIFICATION AND CONTROL
A. System Formulation

In this section, we consider a controlled plant with mul-
tiplicative uncertainties described by

H(zu(k),

w) = 0

HE) = BT AEL @)

me = 2, ®
‘ 2=t

s = 32 (@

where y(k), u(k), H(z~') and Ag(z™!) are respectively
the output, the input, the controlled plant model and the
multiplicative uncertainties. Hn(z‘ll) is the known, con-
trollable nominal model and H2(z™!) € RHy is_proper
and stable [6]. Also z~! is the delay operat8F; and the
polynomials An(z7Y), Ba(z7}!), Aa(z™1), Ap(z7!) are
given as

A(z7Y) = 1+zﬂ:ajz"j, 5)
i=1
Bu(z7') = ibez‘* (n 2 m), (6)
im0
h
Aa(z™h) = 14 ez, (7)
i=1
i
Ap(z™h) = Y Bz (b2 ®)
$=0

Here, a;, fB; are unknown coefficients and (< n), k(<
m) are unknown orders of the polynomials A,(z71),
Ap(z71). ‘

The general block diagram of the feedback control sys-
tem is shown in Fig. 1. First, let us consider a special
case in which there is no uncertainty in the plant (1),
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Fig. 1: Block diagram of feedback control system

that is Ag(z~!) = 0. The feedback controller Gn(z~!)
for H,{z7!) can be predesigned to produce a desirable
response. The closed loop transfer function Fn(z~1) is
described by

Fn(z-—l) =—y(k) — Gﬂ(z~i)Hﬂ(.z-1)

MBS TG Ay O

Next, the genéral case of Ag{z™!) # 0 is considered
with the controller G(z™!) for H(z~!) defined as

G(z™Y) = Galz" 1 + Ag(z71)], (10)

where Ag(z™!) represents the modification of the con-
troller G(z=1). Thus, the closed loop transfer function
F(z~1) can be given as

G(z"")H(z™")
1+ G(z-V)H(z-1)’

F(z"Y = (11)

If (9) and (11) are equal, the response of F(z~!) can
agree with the desirable response. Carrying out an op-
eration using (4), (9), (10) and (11), we can obtain the
following transformation as

Ag(z™!)

AG(Zﬁl) = —W.

(12)

However, since Ax(z~1) is unknown, Ag(z~!) cannot

- be computed by (12). When Ag(z7!) is over the admis-

sible error range of the feedback controller G,(z~1), the

control system performance yields a steady-state error, or

even turns into unstable state. In order to solve this con-

trol problem, in the next subsection we propose a new
scheme using one neural network.

B. Proposed Scheme

Fig. 2 shows the block diagram of the proposed scheme
in this paper. The output F{k) of the identification model
is a sum of the output y, (k) of the nominal model and the
Jidentified output y;4(k) that is the neural network output
ynn(k) passed through H,{z"!). The neural network is
trained using the identified error €(k) that is

e(k) = G(k) — y(k). (13)

The neural network output yxn(k) modifies the control
input as the regulated input A, (k) given by

Ay(k) = —ynn(k). (13)
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Fig. 2: Block diagram of the proposed scheme using one
neural network

Next, the working principle of the proposed scheme is
explained as follows. From Fig. 1 and (10), the contrdl
input u(k) can be represented as

u(k) = un(k)+ Au(k), (15)
un(k) = Ga(z7Ve(k), (16)
Ay(k) = Ag(z"Mua(k), (1)
where un (k) is the nominal control input.
Also, from (1) and (2) the output y(k) becomes
y(k) = ya(k)+ Ha(z71)Ay(k), (18)
(k) = Ha(z7)u(k), (19)
Ay(k) = An(z"Mu(k), (20)

where A (k) is the uncertain output via the uncertainties
A;;(z "'1).
Substituting (15), (17) into (20), we have

Ay(k) = Ag(z"H){1 + Ag(z"Dua(k).  (21)
Using (17) and (21), Au(k) can be rewritten as
At = ) A ()

Ap(z=){1 + dg(z*)]
Substituting (12) into (22), we obtain the following rela-

tion:
~ Aulk) = —A, (k). (23)
On the other hand, by Fig.2, (13) and (18), ¢(k) can be
rewritten as ‘
e(k) = Ha(z" V) ynn (k) — Ay (k)] (24)

If the neural network is well trained, we can expect (k) =
0 in (24). Since Hn(z™1) is the nominal model and is not

‘identically zero, we can have

ynn (k) = Ay (k). (25)

Consequently, we can see that the output of the plant
under the proposed scheme can agree with the desirable
response using (14). The next subsection will explain how
the regulated input (14) can be realized using the-neural

network.
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Fig. 3: Neural network used in the proposed scheme

C. Neurual Networi: Model

The multi-layer neural network used in this paper is
shown in Fig.3. The numbers of units of the input layer
and the hidden layer are N and M, respectively. The
number of units of the output layer is one. In Fig.3,
w;j(k) represents the weight that connects the unit j
of the input layer and the unit i of the hidden layer;
vj(k) represents the weight that connects the unit i of
the hidden layer to the output unit; W(k) € RM*¥V
and V(k) € RM*! are the weight matrix of the hidden
layer and the weight vector of the output layer, respec-
tively. From Fig.2, the input vector to the neural network
UT (k) =[u1(k), uz(k), - -, un(k)] € RV is defined as

UTe(k) = [u(k),u(k— 1), u(k ~q),
Ay(k - 1): T $Ay(k - p)}:

wherep> A, ¢> !, N=p+q+1.

Let the unit j’s output of the input layer be denoted
as I; = u;(k) (7 = 1,---,N), and the unit ’s output of
the hidden layer be denoted as H; = o(s;), where s; =
):f___lw.-jlj and o(z) is the sigmoid function defined as
o(z) = %tanh(-y:z:), in which v is the positive parameter
related with the shape of the sigmoid function. Moreover,
the output of the output unit is denoted as O = o(«x),
where x = M v H;.

Now, the energy function J(k) = (1/2)e%(k) is mini-
mized by changing the weights w;; and v; in the training
process. According to the error back-propagation algo-
rithm, the weight updating rules at one sampling time
can be described as

(26)

dynn(k)
v
dynn(k)
W (k)

Vik+1) V (k) — nHn(z7")e(k)

W(k+1)

i

W (k) — nHn(z"V)e(k) ,(28)

where n > 0 is the learning rate.
D. Stability Analysis

This subsection will mainly deal with the local asymp-
totic stability of the proposed scheme for the plant (1)
near the optimal set of the neural network weights. If the
multi-layer neural network is used, there exists the opti-
mal set ]of the weights that makes the identified error (k)
zero ~[7].
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Near the optimal set of the weights, ynyn(k) is lin-
earized by

ynn (k) = oVT (k)W (K)U 1n (), (29)

where g > 0 is the gradient of the sigmoid function.
On the other hand, by Fig.2, (4), (7), and (8), the
uncertain output A,(k) can be written as

1 A
Ay(k) = Bz ulk) ~ D oyz77]Ay (k)
i=0 j=1 ‘
= 6TUn(k), (30)
9= [/BGHBIa"')IBhOs "‘,0,”01,"‘,"@,‘;,0,“',0]1‘;
where 8 is the parameter vector. '
From (29), (30), (k) in (24) becomes
(k) = Ha (27" (K)U In (k), (31)

where T (k) = oVT ()W (k) — 87€ R1*V s defined as
the parameter error.

From Fig.2 and (31), it can be seen that if the identified
error (k) can be asymptotically stabilized, the asymptotic
stability of the proposed scheme can be also guaranteed.

Since Ha(z~!) is controllable and the control input
Un(k) is bounded, the stability of the parameter error
(k) should be guaranteed in order to assure the stability
of the identified error €(k). :

Now, let us consider a Lyapunov function ¥({k) of the
following form:

¥(k) = o7 (B (k).
When the difference
AV =¥(k+1)~-¥(k) <0

(32)

(33)

is held, the asymptotic stability of the parameter error
(k) can be guaranteed by the stipulations of the Lya-
punov stability technique. If the neural network is trained
until €2(k) = 0, the sufficient condition of the local asymp-
totic stability is to choose the learning rate n as

2
<iam "0 (34)
(= sup [H2(e™«T)], (35)
(36)

lQ(k)lw = sup #{Q(k)},
0<k<ky

where kg is the learning time, T is the sampling period,
7{Q(k)} is the maximum singular value of the matrix
Q(k)e RV*N given by

Q) = Un(B)UTN(WT (k)2, (k)W (k)

+VT(k)2:(E)V (U Ty (k)] (37)



The diagonal elements wy;i{k), weii(k) of the diagonal ma-
trices £2;(k), £22(k) are given as

wiui(k) = Y—'—(ig%ﬂ,(wxgg(k) = 0,if s; = 0), (38)
wui(k) = o (K)o (i), (39)

where ¢’ (-) is the derivative of &(-) (Proof see [8]). It can
be easily seen that when the small positive learning rate
is chosen, the condition (34) can be generally satisfied.

III. COMPUTER SIMULATION

To illustrate the effectiveness of the proposed scheme,
we will use the simulation plant with linear and nonlinear
uncertzinties. '

The nominal model used in the computer simulation is

1

-1y
Hale ) = Ty T34 770428, 1 0.02562“;’)

and the following feedback controller Gn(2™1) is design by
using the pole-zero cancellation method [9], that is

1.889 + 7.13127! + 2.8782™2
z—1 '

Ga(z™!) = (41)
For the reference signal r(k) of the unit step function, the
responses of the nominal model H,(z~!) of (40) under the
control Gn{z~1) of {41) are respectively shown in Fig. 6
as the desired response (DRE).

In the proposed scheme, v = 1 in the sigmoid function
is used, and the weight initial value of the neural network
is chosen as the uniform random number in [-2.0, +2.0].
The learning rate is 7==0.05 and the sampling time is 10
ms. Also, the order of Agy(z~!) is unknown, so it is set
as the maximum order, that is A = n(=p), { = m(= ¢) to
include the possible order range. This results N = § and
M =5 in Fig. 3.

Now, the results of the computer simulations are di-
vided into two parts: a linear uncertainty and combined
linear and nonlinear uncertainties.

A. Linear Uncertainiies

The simulation plant model

11

1.2+ 11271 4562724048273 0.052“:2}
is used with the reference signal of the unit step func-
tion. The simulation results under the proposed scheme
is shown in Fig. 4. The response of the simulation plant
model is converging on the desired response because of the
learning of the neural network.

Fig. 5 shows the time history of #(k) in (36) during the
first iteration of the neural network learning. It should be
poted that other singular values of Q(k) are always non-
negative during the simulation. Since the matrix Q(k)
includes the control input Uyn(k), the maximum singular

Hl(z“l)::

— - e ottt
-~
> g6 First iteration
?}' = == = =Secound iteration
S o2 omm e Fifth iteration
02 - : - .
00 20 40 60 80 100
Time (s}

Fig. 4: Responses of the plant H'(z=!) by using the pro-
posed method
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Fig. 5: Time history of the maximum singular value of

Q(k) .

value #(k) archives the largest value #(k) = 19.92 at the
beginning of the conirol time where the control input for
the step-like reference signal is rapidly changed. As the
result, 7=0.05 satisfies the sufficient condition (34) »nd
guarantees the local asymptotic stability of the proposed
scheme. Q :
On the other hand, Fig. 6 shows the desired response as
+the solid line, the response of the feedback control method
as the dotted line (FBC), the response during the fifth
learning iteration using the proposed scheme as the dashed
line, respectively, where the proposed scheme is abbrevi-
ated as NBAC (Neuro-Based Adaptive Control). We can
see that the response of the proposed scheme can almost
achieve the desired response by only fifth learning itera-
tion. :
The control performance using the neural network is
closely related with the initial values of the network
weights. When the neural network is not sufficiently
trained, the local asymptotic stability may not be always
guaranteed as shown in II. D. Therefore, we examine the
relationship between the control performance and the ini-
tial values of the weights in the proposed scheme. In the
simulation experiment, 10 different sets of the initial val-
ues are chosen using the uniform random number within
the range [~£,€]. For the unit step function as the ref-
erence signal, the mean square error between the desired
response and the plant output, and the standard deviation
are shown in Fig. 7 with the range £. As the range of the
random number becomes large, the mean square error is
increasing and the standard deviation is spreading: How-
ever, if smaller initial values are used, the mean square
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Fig. 6: Comparison of control results for the plant
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Fig. 7: Change of the control performance with the initial
-values of the neural networks weights

error converges almost zero.

B. Linear and Nonlinear Uncertainties

Consider the following simulation plant model with lin-
ear and nonlinear uncertainties,

¥(t) = H' (27 u(k) + {1 - ezp[ru(k)]},

where {1 — ezp[ru(t)]} is the nonlinear uncertainty. The
parameter « represents the index of nonlinear extent and
is set as * = 0.01 in this simulation. It should be noted
thait H(z~!) includes the parameter perturbation shown
in (42).
_ The proposed control scheme is applied to the plant
~model (43) with the reference signal of the unit step func-
tion and the feedback controller as (41). Fig. 8 shows the
simulation result. The response during the fifteen learning
iteration almost agrees with the desired response shown in
Fig. 6. Although the stability of the proposed scheme is
proved to the plant with only linear uncertainties in Sec-
tion II. D, it may be also effective to the class of plant
- with nonlinear uncertainties.

(43)

IV. CONCLUSION

In this paper, the new neural control scheme that can
regulate the control input and identify the controlled plant
with uncertainties by using only one neural network is pro-
posed. In future, we plan {o extend the proposed scheme

14
NN :
ol L m—ene 158 Heration
% 06 H o = me = 1 1th iteration
=
£ menmem- 15th iteration
© 02 '
.0‘2 i H H 4 4. ‘J 4. P -
00 20 40 60 80 1100
Time {s}

Fig. 8: Simulation results for the plant with linear and
nonlinear uncertainties

to a general nonlinear plant and a multi-variable system,
and to improve the learning speed of the neural network.
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