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Abstract Although all approaches described above can assure the

The present paper proposes a new feedback control
strategy of mobile robots with nonholonomic constraints.
This method introduces a function generator called a Time
Base Generator {TBG) as a time varying feedback gain, and
by synchronizing linear and angular velocities of the mobile

~ robot with a scalar variable generated by the TBG, the
mobile robot can be positioned to the origin in the state
space for any initial condition. Not only the configuration of
. the robot but also the time behavior of the generated
trajectory such as the velocity profile and the movement
time from an initial to a target position can be regulated
through adjusting the parameters of the TBG.

-1 Introduction

Recently, control of robot systems with nonholonomic
"constraints has been investigated actively in various fields
such as mobile robots, underwater vehicles and
manipulators with free joints [1]. For controlling a mobile
robot with a nonholonomic constraint, Samson [2] and
Pomet [3] proposed the feedback law using a time-periodic
function and showed that a mobile robot with two driving

wheels can be positioned to a given final configuration for

any initial condition. Although this approach using the time-
varying smooth feedback can assure the stability of the
system, the slow convergence may be a defect. Then,
Canudas de Wit and Sgrdalen [4] proposed the piecewise
smooth feedback law using the discontinuous controller and
proved that a mobile robot is exponentially stabilized and
the convergence to the target point is extremely faster than
the time-varying smooth feedback control, Also, Badreddin
and Mansour [S] and Casalino et al, [6] showed that a
special choice of the polar coordinate system representing
the position and orientation of a mobile robot allows to
derive a smooth stabilizing coatrol law without
contradicting the well known work of Brockett [7].
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stability, it is hard t0 say to be always practical because an
unnatural trajectory including many switchings between
forward and backward movements may be generated for
some initial and target conditions and the time behavior of
generated trajectories such as convergence time and velocity
profile cannot be regulated.

On the other hand, Morasso, Sanguineti and Tsuji [8], [9]
have proposed a planar end-point trajectory generation
model for human reaching movements. Generally, when a
human subject is instructed to move a hand position from a
starting point to a target point, it is well known that a
trajectory of the end-point draws almost a straight line and
the velocity along the motion direction has a bell-shaped
profile with only one peak [10]. Morasso et al. [8], [9]}
introduced a function generator called a Time Base
Generator (TBG) having a bell-shaped velocity profile and
showed that, by synchronizing translational and angular
velocities of the end-poirt with the TBG, not only straight
trajectories but also curved trajectories could be generated
within the specified motion duration,

By introducing the piecewise smooth feedback law into
the end-point trajectory generation model using the TBG,
the goal of this paper is to propose a new feedback control
method that can.assure the convergence to the target point
and regulate the time bebavior of the generated trajectory
such as convergence time and velocity profile. The
effectiveness of the proposed method is shown through
some simulation experiments and the behavior of the mobile
robot under the proposed control law in the cases of straight
and circular trajectories are analyzed.

2 Mobile robot with two driving wheels [1], [4]

Figure 1 shows a mobile robot with two driving wheels,
where X, denotes the world coordinate system fixed on the
planar task space. Also X, is defined as the moving
coordinate system fixed on the robot, where the origin and
the x axis of I are set at the center of the wheel axis and
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the orientation of the robot, respectively. Under these
definitions, the generalized coordinates of the mobile robot
consists of three variables: the position (x,y) and the
orientation angle 6 of the X, represented in the Z,.

L | x
Fig.1 Mobile robot with two wheels

The relationship between the velocity of the generalized
coordinates x=(x,y, 8)7 and the linear and the angular
velocities # = (v, @)T is given as

=G 6
’ cosd O

G{x) = {sin g 0 | @
' o 1

where v and o denote the linear and the angular velocities
of the robot. In (1), it can be seen that one degree of
" freedom of the system is constrained as

Xsin@-ycos8=0. 3)

It has been shown that the system (1) is of symmetric Affine
and controllable, so that it includes a nonholonomic
constraint {1}, [4].

f’l‘ime Base Generator}

* L———o ¢ feédback u x x
5_‘}?‘—“ controller m g i

Fig.2 Feedback control System using TBG

'3 Feedback control using Time Base Generator
3.1 Time Base Generator

Figure 2 shows a block diagram of a feedback control of
the planar mobile robot using the TBG. Generally, for a
system with nonholonomic constraints, any smooth time-
invariant state feedback stabilizing the system does not exist
{7]. In the present paper, this problem is coped with by
introducing a scalar variable £(f) with a bell-shaped
velocity profile generated by the TBG as a time varying
feedback gain.

The scalar function &(¢) is defined as a first
differentiable and monotonically non-increasing function
satisfying £(0)=1 and £(t) =0, where f, represents the
convergence time of the mobile robot from the initial to the
target positions. In this paper, the dynamics of the TBG is
defined as follows:

E=-y(£Q1.0-&), @

where 7 is defined as a function of the convergence time ,
and B satisfying 0< <1 is a constant that determines the
behavior of the TBG.

From (4), £() has two equﬂxbnum points of £=0 and
&é=1. Consequently, £(r) always converges stably to
&=0, when an initial value of £ is chosenas £(Q)=1-¢
using a very small positive constant €. Then the
convergence time can be calculated as

[ & Tr'a-p
I;*J;d? j § =yT0a=2p’ )]

where I'(-) is the gamma function (Euler's integral of the
second kind). When the parameter ¥ is chosen as

- Ta-p
?’-m' : ©)

the system converges to the equilibrium point in the finite
time #, and this equilibrium point =0 becomes a terminal
attractor [11]. The velocity profile E@) satisfies £(0)=0
and £()=0, and is bell-shaped with the minimum value
5(‘x/2)-« ya P ate=ts)y.

Figures 3 and 4 show the changes of the time behavior
&(f) generated by the TBG depending on the parameters /;
and f. In Fig.3, the time histories of £() and £() are
shown depending on the change of the convergence time

1.00 =1.0(s)
0.75 =15(s)
€ 0.50 =200
0.25
0
1 (s)
204
0) >
0.4
¢ -08 =1.0(s)
1.2 ——-1=15()
-1.6 o — 1:!= 2.0(s)

®
Fig.3 Changes of the £ behavior depending on the
convergence time ¢,
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Fig.4 Chénges of the & behavior depending onthe

power parameter

;= 1.0, 1.5 and 2.0 (s) under the parameters f=0.5 and
£=1.0x107". All trajectories converge to the equilibrium
point at the specified time #,. On the other hand, Fig.4
shows time histories of £(f) depending on the change of
the power parameter f= 0.25, 0.5 and 0.75 with #;=10
(s) and £=1.0x10"". The time history of £() can be
regulated through the power parameter f while keeping the
convergence time constant.

Consequently, using the TBG with two parameters of B
and 1, presented here, various kinds of time-varying
functions baving the bell-shaped velocity profile can be
generated. In the following section, the method generating

-smooth trajectories of the mobile robot with nonholonomic
constraints is presented using this TBG.

3.2 System equation and feedback control law

The purpose of the feedback control is to automatically

drive the mobile robot from any initial configuration to the -
given final configuration which we define to be the origin of

the generalized coordinates.
Y ‘ \

Fig.5 Coordinate transformation

Canudas de Wit and Sgrdalen {4] proposed the piecewise
smooth feedback control law using the circle family that

pass through the origin and the current position of the
mobile robot (x,y) and contacts with the x axis of the X,
at the origin as shown in Fig.5. In the figure, 8, represents
the tangential direction in a point (x, y) of this circle and it
belongs to [, 1) . Their control law is based on the idea
that the arc length from the origin to the current position
should be decreasing and the current angular orientation of
the mobile robot should agree with the tangential direction
8,. In the present paper, instead of the arc length, the
distance r from the current position. to the origin is used.
Let an error angle between the tangential direction 8, and
the current angular orientation € be denoted as . Then
the following coordinate transformations from (x, y, 6) are
introduced:

i =Vai+y?, G}

ax,y 6)=e+2nlen, 6]
e=8-6,, ©)
6,=2atan2 (y, ), 10

where n(e) is a function that takes an integer in order to
satisfy ae [-m, ) and atan2 (-,-) is the scalar function
defined as atan2 (@, b) = arg (b + ja) where j denotes the
imaginary unit and " arg " denotes an argument of a complex .
number. As a result, a current state of the mobile robot can
be represented by

z=F@)» an

MERLSS))
Hﬂ{a@xeﬁ (12)

Also, the target configuration of the mobile robot is
transformed to z,= (0, 0)" . Consequently the stabilization
of the system is understood as designing a control law
converging to z,= (0, 0" for any initial configuration.
Firstly, from (11), the relationship between Z and x is
given as
doF(x) ,

T Ax=J(x)!'c , (13)

—
=

where

-+ -L
Jx)= (x2+)'2) ZX'(x2+y2) 2y 0 ERsz‘ (14)
Zy - 2x 1
FE I Ti4y2

Substituting (1) into the above equation, we have the
relationship between Z and the system input u :

2= Jx)G(x) u = B(x) u» 15)
where
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b, 0
sw=[1: 1] a6
1
b=(*+y>) ¥ (xcos 6 +ysin ), an
bzzxziyz(ygos g -xsin ). (18).

Thus, the number of the state variables is reduced to the

same number as the system input.
For the system of (15), the following feedback control law

is proposed in this paper:

ri
v bi§

u= = + 1, (19)
{w} —sz'f'—a&é

where it is assumed that b, #0 for any ¢ exceptfor 1=1.

3.3 Stability analysis

Substituting the control law (19) into the system equation
(15), we have

. ¢

r=by=r=2, 0
-

a=by+ o= a-g. (21)

Firstly let us consider the behavior of the distance r with
respect to the variable £ . From (20), we can obtain

dr r

—sme, 22)

E”T ‘
Solving this differential equation, we can get

r =1 Og £ (23)

where r, is an initial value of r. Thus it can be seen that
the distance r is proportional to the &) under the control
law (19). The &) converges to £— 0 attime f,, so that r
also reaches r—0 at time f,. On the other hand, the
relationship between « and £ is also given as

a=opf, 24

where ¢, is an initial value of . In the same way as the
. distance r, we cansee @—0 attime f,.

In summary, it bas been shown that the mobile robot
always converges to the target position at time {, using the
control law proposed in this paper so long as b, #0. Under
the proposed method, both the translational and the
rotational motion of the mobile robot can be synchronized

with the & behavior of the TBG and thus the time behavior
of the generated trajectory of the robot with nonholonomic
constraints can be regulated through the TBG.

4 Simulation experiments

4.1 Generation of straight trajectories

Let us firstly consider a case x,= (X, 0,0)", where the
initial position is on the x axis and an initial orientation 8 is
given by 8=0(rad) as shown in Fig.6.

Then from (8) and (19), we have

ay=2atan2 (0, x9 =0 . , (25)
Also under the proposed control law (19), we have @=0

since §,=0. As a result, it can be seen that the mobile
robot always exists on the x axis of the X, . Since y=0 in

this case, from (7) we can derive

r=vx¥=|x], (26)
and then from (23), we have

x|=| % |¢. @n

This means that the position of the mobile robot is
completely proportional to &) .

X

*o xf

Fig.6 Genaration of a straight trajectory
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Fig.7 Straight trajectories generated by the
proposed method
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Figure 7 shows the time histories of x and X generated
by the proposed method for the initial position of the robot
as xo=(-10 (m), 0 (m), O (rad))”, where three different
convergerice time 1,=1.0,2.0,3.0(s) are used with the
same power parameter f=0.75. It should be noted that the
y coordinate and the angular orientation € of the generated
trajectory are always 0, since the trajectory is a straight line
along the x axis. From Fig.7, it can be seen that the
proposed method can generate a straight trajectory naturally
for some specific initial conditions and the dynamic
behavior of the robot can be specified by the TBG.

42 Generation of curved trajectories

 Figures 8 and 9 show the results generating the proposed
method for several initial conditions corresponding to
‘different points on the circle with its radius of 10 (m), where
the initial orientation angle 8, is set as &,=7/2 (rad) in
Fig.8 and 6,=0(rad) in Fig.9. Also the set of the
parameters of the TBG, f=0.75 and 1,=1.0(s), are used.

To have described in the section 3.2, the control law (19)
becomes singular at the point that the parameter b, of (17)
reduces to 0. From (17), it is clear that the singularity occurs
at points where the position vector from the origin of the
coordinate system (that is, the target position) to the current
position of the mobile robot and the orientation vector of the
mobile robot are orthogonal each other (see Fig.5). Then to
observe the behavior of the mobile robot in the

" neighborhood of the singular configuration, the initial
conditions starting from the point close to the singular
configuration are included in Fig.8 and 9: two trajectories
starting from the points close to the X axis in Fig.8 (x,=
(10@m), 1.0x107°(m), =/2(rad)” and x,= (~10(m),
-1.0x107° (m), /2 (rad))"). and two trajectories starting
from the points close to the yaxis in Fig9 (x=
(1.0x 107 (m), 10 (m), 0 (rad))” and x,=(-1.0x10°*
(m), ~10 (m), 0 (rad))" ). .

In all cases including the trajectories starting from the

‘neighborhood of the singular configuration, the robot can
arrive at the target position without encountering with the
singularity (b, =0) generating the smooth trajectories not
containing any switching between forward and backward
movements. Especially, it seems that the trajectories
corresponding to the initial configurations of x,=
W30 (), V50 (m),®/2(ad)” and x,= (~30 (m),
~/30 (m), ®/2(rad))” in Fig.8 may be circular.

These cases are now examined in detail. Let us consider
the case that the initial orientation 8, agrees with the
tangent direction of the circle passing the initial position and
the origin (see Fig.10). From (8), itis clear that o, =0, then
from (19), we can obtain

w=~byyv. _ (28)

¥y (m)
27

1 : . : — ,
12 8 4 0 4 8 12
x (m)
Fig.8 Generated trajectories when the robot is
initially located on the circle with 6, = /2 (rad)
¥ ()
12

.

4 F

-2 -8 4 2:: (m)

Fig.9 Generated trajectories when the robot is
initially located on the circle with §, = 0 (rad)

12
0 4 8 1

Also, letting a radius of the circle defined at the initial
position be denoted as R, (see Fig.10), we have

x4 2
R°= 2yy

(29

Using the relations sin 8=x/R, and cos §=(R,~y)/R;,
transforming b, of (18), the following relationship is
derived: :

Ry~y
by=e2 [fo=X o X
2 xz+yz( R, Y Rox)

=1 30)

R,

As a result, the gain b, remains a constant. From (28), it
can be seen that the mobile robot always exists on the circle
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defined at the initial position and it converges to the target
configuration as generating the complete circular trajectory.
Figure 11 shows the time histories of the x coordinate and
the linear velocity v for the initial configuration
o= /30 (m), ¥30 (m), 772 (rad)) " in Fig.8. The solid and
dashed lines represent the results using the proposed method

and the method by Canudas de Wit and Sgrdalen [4], .

respectively. For the case using the method of Canudas de
Wit and Sgrdalen, the robot converges slower as
approaching the target position. On the other hand, the robot
under our method converges just in the appointed time
1;=1.0(s) and the velocity profile almost becomes bell-
shaped.

g
t i
1 R 1
X, !
’ /
\ y
~ ra
\\ ~,/ ___x

the proposed method
w = « the method of ref, [4]

-

0
0 025 050 075 1.00 e
(a)
,0 025 050 075 100 ° ©
/s
/
/
~40
v / the proposed method
/
8 - = = the method of ref. [4]
-80

Fig.11 Time histories of x and v for x, = (V30 (m),
V530 (m), ~/2 (rad))’

5 Conclusions

In the present paper, the new feedback control method of
the mobile robot with nonholonomic constraints has been

proposed. The method has the built-in time function
generator called the Time Base Generator and the time
behavior of the moving vehicle such as the convergence
time and the velocity profile can be regulated through
adjusting the parameters included in the TBG.

Some discontinuous points in the task space, however, are
existing under the proposed method because of the property
of the piecewise smooth feedback law. Future research will
be directed to the singularity analysis.
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