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1 Introduction

Robot planning models based on real or artificial potential fields are a powerful computational metaphor
[5, 11, 10, 3]. In particular, we developed a neural network architecture [7] which learns a forward model [4]
of a redundant manipulator (via self-supervised training) as a map of normalized radial basis neurons and
inverts the model by means of run-time gradient descent of a task-related potential field. In this paper, we
propose a distributed model for the computation of the field, which is consistent with the model-inversion
map, and we discuss the problem of self-synchronization between the gradient-descent process and a process
for the generation of virtual trajectories of the end-effector.

2 Run-time inversion of a self-organized forward model

Let a redundant manipulator be described by a vector of joint angles ¢ € Q C R", an end-effector vector
x € X C R® (with n > 6), and the corresponding forward kinematic model x = x(q). We approximate
such a model with a a single-layer map or neural field F of M processing elements (PE;;i = 1,2...M) which
operate in parallel receiving the commeon input vector q and reacting with a normalized Gaussian or softmaz
activation function [6, 2J: ("
() = 2dix—ll)
U= S G- %D o

(The G(-)’s are Gaussian functions of equal variance and the norm is L3). PE;'s have limited receptive fields,
centered around preferred vector protolypes X;’s, where the activation function peaks. The distribution of
activities on the field for a given input pattern is also known as coarse or population code of that pattern.

Learning is performed by means of self-supervised soft competitive learning:

A = m (g~ &) Ui(q) 2
A% = e (x - ;) Ui(q)

which is based on self-generated pseudo-random patterns (x,q) and carries out a smooth distribution of
prototype vectors on the neural field with optimal statistical propelrtf.les1 The forward.model is then ap-
proximated by the following formula:

x=x(q) & zi,-U,-(.q) (3

which was demonstrated [9] to be a minimum-variance estimator. This kind of estimator is also applicable
to any smooth function of x and in particular to an artificial potential field € = (q) which represents the

task constraints: ‘
e(q) ~ Y_&Ui(q) - @

1 The learning rule can be derived by minimizing the cross-entropy between the. probability density function of X and its
approximation by of s G ian mixture, with the Gaussian centers in X;'s [1).
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Figure 1: Block diagram of the gradient-descent network.

where the £;’'s are samples of the potential field which are assigned to each PE in relation to its preferred
sensory-motor pattern (X;, ;). Model inversion via gradient-descent exploits the following result [7):

Ve(a) ~ - ) _(a~ &)ali(a) ®)
i
thus yielding an explicit local dynamic equation for each PE in the map:
a=a) (a-&)li(a) ()
i

The block diagram of figure 1 summarizes the simple feedback which allows the cortical map to carry
out gradient-descent. In order to support run-time planning, the computational mechanism described above
must be complemented by two additional mechanisms which are described in the two following sections: (i)
a distributed mechanism for the generation of the potential field and (ii) a synchronizable mechanism for
the generation of virtual targets.

3 Network model for the generation of the potential field

The use of potential fields is a powerful technique for representing task constraints of different nature and
defined in different coordinate frames. In particular, we hypothesize a finite repertoire of general-purpose
cost functions €1 = €1(q),...,en = en(q)) which operate either as atiractors (for task-components which
assign a credit proportional to the distance from desired states) or repulsors (for task-components which
assign a penalty proportional to the distance from dangerous states). For example, an attractive target-
potential can be defined as follows: €' = '#*(q) = 1|| x7 — x(q) ||*, where xy is the target position. A
repulsive obstacle potential can be written as: £°** = ¢®*(q) = f(|| X035 — x(q) ||), where x,3, is the obstacle
point which is closest to the end-effector and f(-) is a monotonic decreasing function. Then, we can exploit
the additivity of potential fields in order to integrate the different task-components:

e=¢lq) = Z:geee(q) | ™

where the g;’s are relative gain coefficients which can be set according to a high-level attentional module.
We propose a distributed mechanism which implements the global field concept formulated above (see
fig. 2 for a block diagram). It consists of a number of potential-networks, one for each potential function
of the repertoire, which have the same size of the gradient-descent network. The generic PE (element i of
network k) has two types of vector inputs: (i) the pair of prototype vectors (§;,#;) which come from the

2816



Figure 2: Block diagram of the potential-field networks.

corresponding PE of the gradient-descent network and (ii) a task-specific vector z¥, which is common to all
the PE’s of the same network and is coming, as the attention coefficients, from the high-level part of the
planner. The output is just a scalar (£¥) which estimates the credit/penalty assigned to the input pattern
according to specific task-component. For example, in the case of the target-potential, considered above,
2*#* = x7 and the activation function of each PF is simply a Euclidean distance between xr and #;. The
outputs of the homologous PE’s of the different potential-networks are added and the global potential value
is fed back to the gradient-descent network. .

4 A synchronizable mechanism for the generation of virtual tar-
gets

Real-time gradient-descent requires that the potential field is incrementally updated in order to always keep
the gradient-descent mechanism operating near equilibrium (local-incremental gradient-descent). This can
be obtained by a target generation mechanism that smoothly shifts a virtual target x, = x,(t) from the
initial hand position xo to the terminal target position xr thus shaping, via the corresponding potential
network, a target-potential field whose equilibrium state smoothly shifts the position of the end-effector
along the target path. The other, overlapped potential fields introduce a sort of bias which, for the same
_ target motion, determines task-consistent arm-motions in the null-space of the forward kinematic function.
The general requirement for a target-generation mechanism is to produce smooth trajectories such as
trajectories with a bell-shaped velocity profile which are known to (approximately) minimize jerk. In another
-paper [8] we proposed a model of this kind which is based on a time base generator expressed as a non-linear
dynamical system of the following type: ) ' _
E=[1 -9 , ®)

where £ is a normalized scalar variable, the exponent e must be less than 1 in order to guarantee a finite
duration, and the coefficient v is proportional to the peak velocity. The trajectory of the virtual target is
derived from the time base generator with a simple linear operator:

Xy = Xy(t) = Xo + (X7 — x0)€(2) )

~Let us suppose that a nominal value ¥ = ¥ is chosen according to a desired duration of the movement.
- Then the time base generator can be started, generating a time-varying potential field £'$* = ¢'#*(t) which
excites the gradient-descent network. In general, we wish that this network tracks as precisely as possible
the virtual target, i.e. we wish that at any time-instant '#!(t) is as small as possible. On the other hand, if
the motion of the target potential is sufficiently slow (i.e. if v is sufficiently small) then it is always possible
to obtain any kind of positional precision. Thus, we have two contrasting requirements: timing precision
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Figure 3: Simulated trajectories for different values of the gradient gain a

(measured by 4 — 4). vs spatial precision (measured by ¢'#*). The synchronization problem can then be
formulated as a trade-off between the two requirements. In analytic terms, this is a very complex problem:
We simply performed a preliminary simulation study, examining the effect of different values of the gradient
gain « on the tracking error, without any synchronization mechanism, for a planar arm with 2 degrees of
freedom. The results are reported in Fig. 3. We are currently investigating a synchronization strategy based
on modulating the speed factor 4 ~ v as a function the tracking error £'4*.
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