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Impedance Control for Redundant Manipulators and Its Application
to Crank Rotation Tasks

Achmad JAZIDIE, Toshio TSUJI and Mitsuo NAGAMACHI

Faculty of Engineering, Hiroshima University
1-4-1, Kagamiyama, Higashi-Hiroshima, 724 Japan

Abstract:

The present paper argues that kinematic redundancy of manipulators should be positively utilized in
terms of impedance control, and proposes a new method called Redundant Impedance Control (RIC).
The RIC can control not only end-effector impedance using one of conventional impedance control
methods but also joint impedance which has no effect to end-effector motion of the manipulator. Firstly,
Jjoint impedance controller is incorporated to the end-effector impedance controller, and a sufficient
condition about joint impedance for satisfying a given end-effector impedance is derived. Then, the
optimal joint impedance corresponding to a given desired joint impedance is analytically derived using
the least square method. Finally, omputer simulations using a four-joint planar manipulator for a crank

rotation task are performed.
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1L.INTRODUCTION

Impedance control [1, 2, 3] provides an unified
approach to robot control in which the control
variables are not positions or forces, but rather, the
dynamic relation between positions and forces, and
can control the end-effector impedance to follow the
desired one which is specified depending on the
given task.

On the other hand, kinematic redundancy in the
manipulator structure yields increased dexterity and
versatility which includes the ability to avoid
singular configuration and collision with obstacles.
Many investigators have focused on the kinematic
redundancy, especially in connection with the
inverse kinematic problem [4]. Up to the present,
however, only a few number of study about
utilizing kinematic redundancy in terms of
impedance control has been reported: for example,
the Augmented Impedance Control [5]. In the
-augmented impedance control, a vector of new task
variables is defined, where its dimension is equal to

the degree of redundancy of the system. This

additional output vector is augmented to the
end-effector position vector. Then, based on the
augmented vector and the augmented Jacobian
matrix, the impedance control was developed to
achieve the desired end-effector impedance. This
method, however, hasn't taken end-effector inertia
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into accounts, and so, in substantial, reduces to the
stiffness control rather than impedance control.

The present paper argues that kinematic redundancy
of manipulators should be positively utilized in the
terms of impedance control, and proposes a new
impedance control method for manipulators in
accordance with the compliance control problem
established in [6]. The method can control not only
end-effector impedance using one of conventional
impedance control methods but also joint impedance
which has no effect to end-effector motion of the
manipulator.. Regulation of the joint impedance
enables to specify dynamic behavior of joints for
unknown external force beforehand. By setting
impedance of specific joints very large, for
example, it becomes possible to suppress large
motion of the corresponding joints and reduce
degrees of freedom of manipulator substantially.

In this paper, firstly, joint impedance controller is
incorporated to the end-effector impedance control
system, and a sufficient condition about joint
impedance controller which has no effect to
end-effector motion of the manipulator is given.
Then, the optimal joint impedance corresponding to
a given desired joint impedance is analytically
derived using the least square method. Finally, in
order to confirm of the validity and to show the
advantages of the proposed method, computer
simulations are performed using a four-joint
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manipulator for a crank rotation task.

2. STRUCTURE OF REDUNDANT
IMPEDANCE CONTROL

The motion equation of an m joint manipulator can
be expressed as the following.

M(6) 6+ h(8,0) =T-JT(8) Fuy, > (M

where -F,,, € Rl is an external force exerted on the
end-effector; 8 € R™ is the joint angle vector; M(6)
€ Rmxm js a non-singular inertia matrix; A(6,0) €
R™ jis a nonlinear term representing the torque
vector due to centrifugal, coriolis, gravity and
friction forces; 7 € R™ is the joint torque .vector;
J(6) € RPm js the Jacobian matrix (hereafter
denoted by J), and / is the dimension of the task
space (m is larger than /). For this manipulator, the
target impedance of the end-effector is described by

MdX + BodX + KodX = -Foy » - @

where M,, B, K, € R are the desired inertia,
viscosity and stiffness matrices of the end-effector,
and dX=X-X; € Rl is the deviation vector of the
end-effector position.

In the present paper, we adopt the end-effector
impedance control law without calculation of
inverse Jacobian matrix presented in [2]:

T = Teffector + Tcomp » 3

Teftector = JT{WA(B) {Méi(‘KedX - BedX)

ext

+X -To e u-wiomE,, 0 @

Ty = Jwloum (0i(g,6) 5)

where Tgpcor € R™ is the joint torque vector
needed to regulate the desired end-effector
impedance and 7,,,, € R™ is the joint torque
vector for the compensation. It is assumed that
7(6,0) = h(6,9) and manipulator's configuration is
not in singular posture, thatis, W(6) = JM-1(6)J7
always invertible.

The control law given by equations. (3), (4) and (5)
can be applied for redundant manipulator directly,

but it cannot positively utilizes kinematic
redundancy of the manipulator the same as other
impedance control methods [1,3]. So, in order to
utilize kinematic redundancy in the joint torque
level, the joint impedance controller is incorporated
to the end-effector impedance controller in a parallel
way (see Fig. 1)

T = Tjoint + Teffector + Tcomp » ©6)
Tioimt =-M,;d6 - Bjd0 - K;d6 > . (M

where M;, B;, K; € R™™ are matrices of the
desired joint inertia, viscosity and stiffness,

‘respectively; and d0=0-6; € R™ is the deviation

vector between the present joint angle,0, and the
desired joint trajectory,8, ; and 7;,;,, € R™ is the
joint torque vector for the regulation of the joint
impedance. If Tjy;p; is selected as satisfying the
condition

N * Toim = 0 » (8)

then 7,;,, has no effect to the end-effector motion
and the end-effector impedance is equal to the target
one given in (2). Not that (-)* denotes the
pseudo-inverse matrix. In the following section, we
will derive the joint impedance matrices which
satisfy the condition (8). ‘

Coordinate Transformation je€&——

X4 p
- End-effector |* effector
+ impedance T - -
N S Manipulator
Joint At e !
- impedance |7, . onlinear
6, J"WC omp LCOMpensation

Fig.1 Block diagram of Redundant Impedance control
(RIC). The RIC can control joint impedance as well as
end-effector impedance of the redundant manipulator,

3. JOINT IMPEDANCE CONTROL LAW

From equation (7), the sufficient conditions for the

~joint torque T, of (8) is that the following

equations are satisfied at the same time for all joint
impedance parameter matrices, M 15 B f and K e

UY*M;=0, )
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JTy*B;j=0 , (10)
DK =0 - (11)

Firstly, we will explain the optimal way to obtain
the joint inertia matrix M i that satisfies (9).

The general solution of the matrix equation (9) is
given by [7]

Mj=(-J*NZ; , (12)

where Z, € R®™Mjs an arbitrary constant matrix.
The matrix M; in (12) always satisfy the sufficient
condition (9), and so the problem becomes how to
find the arbitrary constant matrix Z; in (12) to
minimize the cost function G(M ):

G(M)) = IWM;-Mpll > (13)

where W € R™m js a diagonal positive definite
weighting matrix, each diagonal component of
which assign order of priority to each column of
M ; . Also llAll stands for matrix norm defined by

Al = prATARS = (3 3 azg0s + (9
i=1 j=1

where A = [a;;] € R™™ and tr [-] denotes trace of
matrix. Using the least square method, we can find
the optimal solution as given by (see appendix)

M;= M) - (15)
r=I-{J*wyusywnyt, (16)

where / is an m>xm unit matrix. Using the same way
as the above, we can also find the optimal solutions
for the joint viscosity matrix, B;, and the joint
stiffness matrix K ;, given by

B=TIB} » (17)

K= FK; , (18)

where B ;, K ; € Rmxm gre the desired matrices of
the joint viscosity and stiffness, respectively.
Utilizing kinematic redundancy, we can control not
only end-effector impedance but also joint
impedance without any effect to end-effector motion
of the manipulator.

4. APPLICATION TO CRANK ROTATION
TASK

A four-joint planar manipulator (Fig.2) was used
in the simulation experiments for a crank rotation
task, and the link parameters of the manipulator are
shown in Table 1. Two kinds of coordinate
systems are chosen as follows: (i) the world
coordinate system, X (x,y); and (ii) the polar
coordinate system, ®d(¢,r), with its origin at the
center of the crank where ¢ is the rotational angle of
the crank and r is the distance from the center of
rotation to the end-effector, that is, the radius of the
crank. Dynamic computations of the manipulator
and crank movements were performed by the
Appel's method [8] under the closed link structure
with the crank radius of 0.15 m and viscous friction
of 10.0 Nms/rad for each manipulator's joint.

polar
coordinate
system

y
Lx ll
0.1 m
world coordinate system ;ﬁ

6=(90.0, 30.0, -110.0, -40.0) deg.

Fig. 2 A four-joint planar manipulator performing
a crank rotation task.

Table 1 Link parameters of the
four-joint planar manipulator

link1,2 | link3 link 4

length (m) 0.28 0.28 0.25
mass (kg) 3.392 3.392 1.92
center of mass (m) 0.128 0.128 0.1025

moment of inertia (kgm2) 0.29312 | 0.29312 ] 0.011017
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The target end-effector impedance (2) is expressed
in the polar coordinate system, and the target inertia,
viscosity and stiffness matrices are given as M, =
diag. [2.25%10°3 kgm?, 0.1 kg], B, = diag. [0.45
Nms/rad, 2 Ns/m], and K, = diag. [22.5 Nm/rad,
10 N/m], respectively. Also the desired
end-effector trajectory (equilibrium trajectory) is
defined as the following:

207317 - 30m/ef + 12518}

r

{
{fﬁd() %)

ra ()

where the time duration # is set to 2.0 sec. The
desired velocity and acceleration of the end-effector
can be obtained from (19) using differentiation.

Fig. 3 shows simulation results performed under
conventional impedance control (equations (3), (4),
(5)), where fig. 3(a) and 3(b) indicate the change of
manipulator's posture and the time profiles of joint
angles, respectively. On the other hand, Fig. 4
shows a simulation result performed under the
redundant impedance control proposed in this paper
(equations (4)-(7) and (15)-(18)), where the desired
joint impedance matrices in (7) are given as M; =
diag. [0.001, 0.0001, 0.0001, 0.001] kgm2, B, =
diag. [2, 0.2, 0.2, 2] Nms/rad, K} = diag. [1000,
100, 100, 1000 ] Nm/rad, the weighting matrix is
set to W = diag. [50, 1, 1, 50], and the desired joint
trajectory is given as 6,(¢ ) = 6(0).

From these figures, it can be seen that both of the
manipulator can rotate the crank finely. However,
the effectiveness of the proposed method appears
clearly in the level of joint motion of the
manipulator. Since the impedance of the 1st and the
4th joints were set to large values, they almost
didn't move during the task, and so the manipulator
became non-redundant and end-effector motion was
realized by the 2nd and the 3rd joints.

5. CONCLUSION

In this paper, the new method named Redundant
Impedance Control (RIC) has been proposed. The
RIC can control not only the end-effector impedance
but also joint impedance which has no effect to
end-effector motion of the manipulator. For a given
desired joint impedance, the RIC gives the optimal
joint impedance in the least squared sense while
satisfying the required end-effector impedance. It

was shown by computer simulations for the crank
rotation task, that by setting impedance of specific
joints very large, it becomes possible to suppress
the motion of the corresponding joints and reduce
joint degrees of freedom of the manipulator
substantially.

initial posture
------------ transient postures
final posture

2.5

2 e
\_g; 105 =—~—-‘_'-ﬂ':‘.,_".:‘--” _._.“_,-""“,' “‘- ------
s 1l
I
2 ol T2 Time )
= 0.4 0.8 1.6 2.0
"0.5 -h__,_,_—'—""ﬂ-ﬂ-_”—‘\‘h——
1t
— -— Istjoint, 8] e 31d joint, 63

2nd joint, 6y =-=-== 4th joint, 04
(b) Joint angles.

Fig.3 Motion profile of four-joint manipulator
during crank rotation under the conventional
impedance control method.
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APPENDIX

Firstly, let's consider the case of W = I. In this
case, the cost function (13) becomes

G(M) = HM; M- (A.D)
Substituting (12) into (A.1), we find
* + T
G(Zl) = [tr {(Mj -{-JJ )Zl) A

(M; @-7THzpn™ - (AD

Now, the problem is how to obtain the matrix Z,
minimizing G(Z,). It is well known that the
necessary condition regarding the optimal solution
of the above problem is given by

3G(Z,)/0Z, =0 - A3)

Substituting (A.2) into (A.3) and expanding it, we
have

a-rnz=a-rom; - A9

using the partial differential formulas about trace of
matrices [7]

dtr [AZ,B1/0Z, = AlgT > (A.5)
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dr [AZ\BZ,C1/3Z,=BZ,CA+B'ZA'C" ,
(A6)

and the property of A", (A*A)T(A*A) = (A*A)T =
A*A. Note that A,B and C are matrices with
appropriate dimensions.

Finally, substituting (A.4) into (12), we obtain

M=0-JTM, - (A7

The above equation is the least squared solution of
matrix equation (9) with the cost function given by
(A.1). '

‘Next, we will derive the optimal solution for the
general case, where the weighting matrix, W, not
equal to unit matrix, / . Firstly, we rewrite the
matrix equation (9) in the form as the following.

(J*)TW‘1WMj = (W‘*J*)TWMj =0. (AS8)

The general solution of (A.8) is given by
WM, =11 - W W Iz, - (A9
where Z, € R™™ g an arbitrary constant matrix.

Substituting (A.9) into (13), and finding the optimal
matrix Z, minimizing the cost function, we have

-1+ +

- whHwIhz, =

- (W'1J+)(W'1J+)+}WM; . (A10)
Finally, substituting (A.10) into- (A9) and
expanding it, we have the optimal solution:

-1+ 4+

M= wli - owlirhw'luh ]WM;
=[l- (W'1J+)(W'1J+)+]M;

= TM} ) (A.1D)



