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<Abstract> “The present paper proposes a
method to estimate the motion intended by an
amputee from his EMG signals using the back pro-
pagation typed neural network. Estimation of the
motion is one of the most important abilities to be
provided by the amputee-prosthesis interface for
the multifunctional powered prosthesis. The
method presented here can discriminate the
amputee’s intended motion among six kinds of
limb-functions from the multichannel EMG signals
preprocessed by the bandpass and smoothing
filters. The cross-information among the EMG sig-
nals can be utilized to make the electrode locations
flexible, and the band-pass filters can provide the
amplitude and frequency characteristics of the
EMG signals. The experiments of three subjects
and four electrode locations demonstrates that the
method can discriminate six motions of forearm
and hand from unlearned EMG signals with the
accuracy above 90 %, and can be adapted to some
dynamic variations of the EMG signals by the
back propagation learning.

1. INTRODUCTION

Even if we have lost limbs by traffic
accidents etc. , the motion control area of the Cen-
tral Nervous System(CNS) is still remained.
Therefore, if a part of the muscles which have
actuated the original limb are still remained after
amputation and the surface EMG signal can be
taken from them, the information of the intended
motion must be reflected in the EMG. Conse-
quently, it is expected that a natural feeling of
control similar to that of the original limb can be
realized using the EMG signals.

Several methods have already been reported
on the motion discrimination using the EMG sig-
nal V75 Almost of them relate the observed
EMG data to stochastic sequences by linear differ-
ence equations(e.g. AR model). However, different
muscles work, and signal sources and paths to the
recording electrode change depending on the kind
of motion. Therefore, the properties of the surface
EMG vary largely with changing limb function. In
addition, since the model parameters are fixed, it
is impossible to be adapted to gradual changes of

EMG properties resulting from muscle fatigue,
sweating and changes of electrode characteristics.

This paper describes a discrimination
method by neural networks which can be adapt-
able to the gradual changes of the EMG patterns.
An early work has been done to explore the appli-
cation of neural networks to EMG analysis 8,
Then, the neural networks composed of two
separate subsystems were proposed. First, a Hop-
field network is used to extract features from an
EMG signal. Second, an error-back propagation
neural network is used to classify the feature set.
EMG data were collected from a male subject who
had acquired amputation leaving a very short
below elbow stump. Discrimination among elbow
extenéion, elbow flection, wrist pronation and
wrist supination was found without any subject
training prior to data collection. It was shown
that with an appropriate selection of the gain
parameter in the learning algorithm it was possible
to achieve successful network classification of all
the training data sets within 2768 iterations. In
their method, however, iterations for learning are
too many for the purposes of controlling prosthetic
arms. Further, there are no mention of the net-
work classification for the EMG patterns other
than the training data sets.

In this paper, we proposed a method which
can discriminate the amputee’s intended motion
among six kinds of limb-functions using the mul-
tichannel EMG signals preprocessed by the band-
pass and smoothing filters. The cross-information
among the EMG signals can be utilized to make
the electrode locations flexible, and the band-pass
filters can provide the amplitude and frequency
characteristics of the EMG signals. It is shown
that after several tens of training iterations, 90
percent correct classification level can be achieved.
Then the method proposed is applied to control of
a prosthetic forearm with three degrees of free-
dom.

2. LIMB-FUNCTION DISCRIMINATION BY
NEURAL NETWORK

Fig.1 shows a flow chart of the limb-furfctio.n
discrimination procedure proposed here, which is

CH 3065-0/91/0000-1214 $1.00 © [EEE



composed of band-pass filters, rectification,
smoothing filters and neural network.

2.1 Band-pass filter

The raw EMG signals measured at the sur-
face of the amputee’s skin are passed through the
band-pass FIR filters. Then each of the L chan-
nels EMG signals is divided into N band fre-
quency components as follows.

K
yi(t) = thj(k) z,(t—k) (1)

where z;(1) is the raw EMG signal (i=1,2,..L:L is
number of electrodes), hj(k) is the impulse
response of the jth band-pass filter (7=1,2,...,N)
and yij(t) is the output of the jth band-pass filter
with the EMG z(¢).

2.2 Rectification and smoothing

The NxL EMG signals obtained from the
band-pass filters are rectified and passed through
individual one-pole Butterworth filters each with a
low pass cut off frequency of 1 Hz. The time-
averages Z;; of the resulting EMG signals Y;;(1)
(:=1,2,...,L ; j=1,2,...,N) are computed by

T ¥y()
Z.= O —L—, 2
Vo1 T @)
Further, Z;; is normalized by
Z;
Si' = L (3)
EZ,;
i=1 7
L
where E S"j=l-
i1

2.3 Neural network subsystem

A feedforward t)fpe neural network is used to
classify the rectified and smoothed EMG sig-
nals /. The neural network consists of an input
layer of LX N units, a hidden layer of ten units,
and a output layer of M units. Each unit of the
output layer represents one of M kinds of motions.

The input u; and output o; of the unit ¢ are
defined as follows.

Rectifying

N !
and Smoothing Neural Netwark

Band-pass filter

s .
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Fig.1 A limb-function discrimination method
using the neural network
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flu) =

u; = » (4)
L W;;o0;, (input layer units)
b
0; = fi(w) ()

(hidden and output layer units)

where the input I; to the input layer units is S;; of
Eq.(3). The input to each unit of the hidden and
output layers is a summation of all the individual
weighted outputs passed from the previous layer.
The output of each unit is then a function of the
summation of these inputs. The output function
has the following form,

iu.

; (input layer units)

(6)
..._...__..._.1_% (hidden and output layer units).
1+e 7

2.4 Network pretraining

After attaching the prosthetic forearm, the
amputee is asked to perform each of M kinds of
motions. Then M EMG data are divided into
Mxn data sets as stated in 3.1. The neural net-
work is trained by error back propagation algo-
rithm, using these Mxn data. Then for motion %,
the network weights are updated such that unit 2
of the output layer gives 1.1 and all units except
unit ¢ give -0.1. Why 1.1 and -0.1 are used as the
desired outputs is to prompt the convergence of
the network learning. The learning process is fin-
ished when the value of the corresponding unit of
the output layer became more than 0.8 and the
values of other units became less than 0.2 for each
motion. Further the initial values of the network
weights are uniform randem numbers such that
[W;l<1.0.

2.5 Function discrimination

It is assumed that the amputee intends to
make one of M motions. Then the EMG signals
are observed and inputted into the system.

Since each unit of the output layer has the
sigmoidal function, the output value is within 0
and 1. When one of the units of the output layer
is more than 0.5 and all others are less than 0.3, it
is concluded that the motion assigned to the unit
with the value more than 0.5 is intended by the
amputee. Unless these conditions are satisfied, the
discrimination is left undetermined. This is to
exclude uncertain discriminations and to evade
wrong motions of the prosthetic arm. In addition,
this makes possible to deal with the case when the
amputee has intended to perform some motion
except M kinds of motions.



Table 1 Results of limb-function
discrimination experiments

Experiront Ke. 1 No. 2 Xo.3 No. d ¥o. 5§
Subjact ¥orwmal A Norsal A Korsal B | Norsal B Aaputece
Etectrods @ 90
locations
Xambor of
{terations 8.1 11.3 5.0 ] 1.3
Succcss
rates {X} 100.8 100. % 2.1 $5.3% 93.%
Undetorained .
rates (X) L) 5.1 3.1 12.0 13,4

'2.86 On line training

When the prosthetic arm is in daily use, it is
necessary to consider the variations of EMG pro-
perties resulting from muscle fatigue, sweating and
the change of electrode characteristics. Therefore,
in order to use the prosthetic arm successively all
day, it is required to find the discrimination
method adaptable to these variations.

Now, let’s consider to update the network
weights even in use of the prosthetic arm. When
using the prosthetic arm, howevery, we can not
ascertain whether the estimated motion coincided
with the amputee’s intended one, i.e. we can not
directly find the desired output (teacher’s signal).
Therefore, we propose a method which updates the
weights based on the. discrimination results with
high output values as follows.

1) Find a set of the EMG pattern and the output
motion which gave the output value more than 0.6
during use of the prosthetic arm, and add it to the
set of teacher’s signals. Then delete the oldest one
of the stored teacher’s signals (Mx n patterns).

2) Train the network weights using the updated
set of teacher’s signals.

3) In the case where the learning is not finished
within five times, the weights are not updated to
avoid the wrong learning.

Note that this procedure is equivalent to
apply Hebb’s unsupervised learning rule to the
multi-layer neural network ~’.

3. PROSTHETIC FOREARM CONTROL
3.1 Basic experiments

A basic experiment was performed to investi-
gate the discrimination ability and the conver-
gence of learning. The experimental conditions are
as follows.

(Averigs valuos for 10 klads of Inftial values of the srnaptic reights)
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1) Motions

There are six motions ; wrist flection, wrist
extension, forearm pronation, forearm supination,
hand grasping, and hand opening.

2) Subjects

Two adults(male, normal) and one adult
(amputated at the forearm, 6 cm from the left
wrist joint). The amputee and the normal A are
right-handed, and the normal B is left-handed.

3) Sites of measurement

Four pairs of surface electrodes(L=4) were
attached on the forearm, 7 c¢cm from the elbow
joint, The electrode is dry-type made by Imasen
Technical Lab. Three kinds of electrode arrange-
ments are shown in table 1. EMG signal in each
channel was A/D converted with the sampling fre-
quency of 1 KHz and were stored in the computer
as the data file. ‘

4) Training data

The amputee was asked to perform each of
M kinds of motions by one time. Then the EMG
signals for 2 sec after a transient period were
measured. The band-pass filters were composed of
three kinds(N=3) of central frequencies, 70 Hgz,
160 Hz and 360 Hz with 40 Hz band width each.
The order of FIR filter was K=10 and the impulse
response hj(k) was computed by Remez’s algo-
rithm. Each of the stored EMG data was divided
into 10 data sets of 200 msec intervals.

Based on ten data sets, S;(i=1,.4 ;
7=1,2,3) in (3) was computed (7T=100 msec
:n=10). These 6x10 data were used to train the
neural networks.

Separately from training data, each of M
kinds of motions were performed by 100 times and
the EMG signals were used to confirm the function
discrimination after learning.

Table 1 represents number of learning itera-
tions, success rates and undetermined rates in dif-
ferent experiment conditions, where the success
rate is the ratio of the correct discriminations in
discriminated trials and the undetermined rate is
the ratio of the undetermined trials in all trials.
They are averages over ten kinds of initial values.
of the network weights. Note that the success
rates are more than 90% independently of subjects
and electrode locations, and especially the
numbers of iterations training the neural networks
are less than 30.

Fig.2 shows an example of learning process
of the experiment No.l. The abscissa is the
number of iterations and the ordinate is mean
squared error E as follows.

60 6 (7} _ 402
0 i
E - E E ( 1 1 )

=1 iml

P (7)



where .osﬁ is the unit output of the output layer
and tg’} is the desired output. The error decreases
monotonously during training.

When the amputee performed M kinds of
motions in consecutive order, the intended motions
were estimated at 100 msec intervals and are
shown in Fig.3.  The above is four channels EMG
patterns and the lower is the discriminated
results(black dots). The horizontal lines -denote
wrist flection, wrist extension, forearm pronation,
forearm supination, hand grasping, hand opening,
rest and no action in a descending order. When
the amplitudes of EMG signals are less than the
threshold level, it was concluded that the amputee
was at rest. Though the EMG signals during sta-
tionary periods give correct results, quite a
number of wrong discriminations occurs particu-
larly at the time of a change of motions. This is
due to sharp fluctuations of the EMG patterns.

3.2 Prosthetic forearm control experiments

A prosthetic forearm was controlled using
the limb-function discrimination method in order
to confirm the adaptation ability to the variation
of the EMG patterns. The prosthetic forearm is
driven by ultrasonic motors installed in the
forearm, wrist and hand, and has three degrees of
freedom, i.e., six motions of wrist flection, wrist
extension, forearm pronation, forearm supination,
hand grasping and hand opening. EMG data pro-
cessing was done by using two CPU(Transputer,
T800, 25MHz) in parallel. The time for training
the neural networks was taken 763 msec/iteration,
the time for the discrimination 2.4 msec, the time

for A/D conversion, rectification, smoothing and
D/A conversion 1 msec. The subject is normal
and four pairs of surface electrodes were attached
with 980-deg difference on the forearni. At first,
the neural network was trained by off-line learn-
ing. Then the subject was asked to continue to
perform six kinds of motions in no particular order
for about one hour. Photo 1 shows the experimen-
tal situations. During the whole time the
prosthetic arm was operated, on-line training for
the neural network had been performed. Then the
subject was informed the discrimination result first
half an hour, but was not informed it latter half an
hour.

Fig. § shows time histories of limb function
discrimination rates. The solid line denotes the
proposed method and the dashed line denotes the
discriminant function method which does not have
learning ability 9. Both have maintained high
success rates during the results are presented to
the subject. But after stopping presenting the
results, the discriminant function method indicates
a marked decline in the success rate.

Fig.5 (a) and (b) show the distributions of
S',-j (i=1,..,4 ; 7=1) of 10 times at pre-training and
after an hour from the beginning of prosthetic arm
control respectively., It is known that there are
marked differences between both in terms of wrist
supination, hand grasping and hand opening. Since
the proposed method is possible to be adapted to
the wvariations of the subject’s EMG patterns
through learning, high success rates are main-
tained. This is very important in dally use of the
prosthetic arm.

Now Fig.6 shows the number of iterations at
each of on-line training in Fig.4. It is known that

Flection  Extension Pronation Supination OCrasping Hand-opesitg

Mean Squared Error, E

L ST Ml 1,

Iteration number

Fig.2 An ezample of convergence behavior
during network pretraining
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Fig.3 Discrimination results of a series of
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Photo.1 Control of the prosthetic forearm
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