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Abstract. The present paper proposes a new method to
represent the manipulator configurations in the task space
using a concept of the virtual arm. The virtual arm has the
same kinematic structure as the manipulator except that
its end-point is located on the joint or link of the manipula-
tor. Providing that the appropriate number of virtual arms
are used, the manipulator configurations can be
represented by a set of the end-points of the virtual arms.
This paper formalizes the kinematics of the virtual arms
and presents a method of how to generate a trajectory of
the actual arm using the virtual arms. Then, the method is
applied to obstacle avoidance problems for redundant
manipulators. Computer simulations show that the plan-
ning of the end-point trajectories of the virtual arms can
perform the local obstacle avoidance in the task space.

INTRODUCTION

In control of multi-joint manipulators with redundant
degrees of freedom, the configurations as well as the end-
point trajectory of the manipulators need to be considered.
In trajectory planning, for example, the whole arm includ-
ing an end-point must not collide with the obstacles. In
general, the manipulator configurations are represented by
any set of generalized coordinates, which is called the confi-
guration space, that completely specify the position and
orientation of the manipulator. This means that it is neces-
sary to map the environments {e.g. obstacles, camera infor-
mation etc.) in the manipulator’s task space into its confi-
guration space.

The present paper proposes a concept of the virtual
arm which gives a new method to represent the manipula-
tor configurations in the task space. The virtual arm has
the same kinematic structure as the manipulator which is
called the actual arm, except that its end-point is located
on the joint or link of the manipulator. Providing that the
appropriate number of virtual arms are used, the configura-
tion of the actual arm can be represented by a set of the
end-points of the virtual arms. Then motion planning for
redundant manipulators can be considered in the task
space.

First we will discuss the kinematics of the virtual arms
as formalized by using a concatenated Jacobian matrix
which represents systematic structure of the virtual arms.
The concatenated Jacobian matrix can represent both the
redundant and over-constrained cases. Then we propose a

method of how to generate a trajectory of the actual arm
using the virtual arms. The method consists of two steps :
1) planning trajectories of each virtual arm's end-point in
the task space, 2) integrating them into a trajectory of the
actual arm. The trajectory planning of each virtual arm
can perform in a parallel and distributed way and needs not
be considered in the joint space of the actual arm. Integrat-
ing the planned trajectories of virtual arms into the actual
arm reduces to the inverse kinematic problem of the virtual
arms. This problem involves both the redundant and
over-constrained cases. Our method using the pseudo
inverse of the concatenated Jacobian matrix can be applied
to the both cases. Finally we apply the trajectory genera-
tion method using the virtual arm to the obstacle
avoidance problem for redundant manipulators. Computer
simulations show that the planning of the end-point trajec-
tories of the virtual arms can perform the local obstacle
avoidance in the task space.

VIRTUAL ARMS AND ITS KINEMATICS

We consider a redundant manipulator having m joints
and a Cartesian task coordinate system shown in Fig.l.
Then the virtual arm is defined as an arm, the end-point of
which is located on a joint or a link of the actual arm. Fig.2
shows an example of three virtual arms for a four-link
actual arm. The parameters of the virtual arm such as the
link length, joint angles and base position, are equivalent to
the actual arm. In general, we use n—1 virtual arms and
regard the actual arm as the n-th virtual arm. Using the
appropriate virtual arms, the configuration of the actual
arm can be represented by a set of the end-points of the vir-
tual arms in the task space.

Let the end-point displacement vector of the i-th vir-
tual arm in the task coordinate be denoted as
dX; = (dX;,dX;5,"~,dX;)7 where I is the dimension of the
task coordinate system. Let also the joint displacement
vector of the actual arm be denoted as
d9 = (d8,,d8,,+,d8,,) T where m is the dimension of the joint
coordinate system. For redundant manipulators, m is
larger than L The kinematic relationship between the end-
point displacement vector dX; of the i-th virtual arm and
the joint displacement vector d8 of the actual arm is given
by

dX; = J{6)d6 (i=1.2,n), 1)

where J,(8) € R™™is the Jacobian matrix of the i-th virtual
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Fig.2 The virtual arms for a four-link planar manipulator

arm[1].

Then- we concatenate the Jacobian matrices to
express the kinematic relationships for all virtual arms
simultaneously. The new equation is given by

dX,= Jdo, (2)
where
dX; Jy
dx, Ja
dX,=| - {,7=|-1. (3)
dx, J,

dX,€R™ is a concatenated end-point displacement vector,
and J€ R™™is a concatenated Jacobian matrix. Since the
i -th virtual arm contains the arms from the first to the
(i-1)-th one, the matrix J has a systematic structure and
can be easily computed.

Using the concatenated Jacobian matrix J , the
corresponding force/torque relationship of the virtual arms
is given by

r=JTF,, (4)
where 7€ R™ is the joint torque vector of the actual arm

and F,€ R™ is the concatenated force vector of the virtual
end-points in the task coordinate system.

INVERSE KINEMATICS OF THE VIRTUAL ARMS

Now, let’s assume that the desired virtual end-point
displacement dX] is obtained according to the given task.
We wish to solve the kinematic equation (2) for the joint

(a)redundant case (b)over-constrained case (c)singular case

® virtual end point

Fig.3 Three cases of the virtual arms

displacement d§ of the actual arm.

Depending on the joint degrees of freedom of the
actual arm and the locations of the virtual end-points, the
kinematic equation (2) may occur to be redundant, over-
constrained or singular. Fig.3 shows an example of the
three cases. The actual arm is a seven-link planar arm
(m=T7) , and the dimension of the task space includes two
translations and one rotation (1=3) . As aresult, the actual
arm is a redundant manipulator. Locating a virtual end-
point on the fourth link as shown in Fig.3(a), the desired
concatenated virtual end-point displacement dX; in (2) has
6 elements. Then, the actual arm still has redundant joint
degrees of freedom since m=7 . Therefore, the kinematic
equation (2) is under-constrained and the concatenated
Jacobian matrix J is of full row rank, as long as the actual
arm is not in singular configurations.

In Fig.3(b), five virtual arms are located. The desired
virtual end-point displacement dX; has 18 elements, so that
the manipulator is over-constrained. The concatenated
Jacobian matrix J is of full column rank, and any joint dis-
placement of the actual arm d@ does not satisfy (2).

On the other hand, Fig.3(c) shows the case where a
virtual arm has its end-point on the sixth link. At first
sight, the manipulator still seems to be redundant, because
the joint degrees of freedom are more than the dimension of
the desired concatenated virtual end-point displacement
dX; in (2). In this case, however, since there is only one
joint between the actual and virtual end-points, it is impos-
sible to control the positions of both the actual and virtual
end-point at the same time. The concatenated Jacobian
matrix J is not of full rank. Consequently, it can be seen
that the rank of the concatenated Jacobian matrix dom-
inates the kinematic equation (2).

Maximum rank decomposition of the concatenated
Jacobian matrix J gives us an unified approach to all three
cases,

J=JJ, (5)
where J,€ R™P and J, € RP*™ have the same rank as
J;rankJ = rankJ, = rankJ; = p. Substituting (5) into (2), we
have .

dX, = J,J;df . (6)

The matrices J, and J, express an over-constrained part
and an under-constrained part of the concatenated Jaco-
bian matrix J, respectively.



To derive a general solution of the kinematic equation
(6), we should solve it for a vector J,df as the first step.
Setting

dX, = J,do , (7
we have

dX, = J dX; . (8)
In general, the exact solution dX; which satisfies (8) does
not exist, because the matrix J, is of full column rank. In

this case, we have to find an approximate solution. Here
let’s assume that the goalis to find a vector dX, to minimize

QdX,) = (dX3-J,dX,) T W(dX;~J,dX;) , 9

where dX is a desired concatenated virtual end-point dis-
placement vector. The weighting matrix WeR™ in (9) is
a nonsingular diagonal matrix,

W = diag. [wyg, " 0y, Way, " s Wapy™ s Wnl (10)

which can assign order of priority to each virtual end-point
according to the task environment. The optimal solution
dX, is given by

dX, = (FTWIYTWax, (11)
This solution dX, gives the concatenated virtual end-point

displacement dX, which is the closest one to the desired dis-
placement dX; in terms of the cost function Q(dX,).

The second step is to solve (7) for the joint displace-
ment vector df using the vector dX; . Since the matrix J; is
of full row rank, the solution 46 which satisfies (7) always
exists. Using the pseudo inverse of J, , we can obtain the
general solution[2]

d6 = I dXy (1= T Iy)u, (12)
where J; = JHJJT) 1 € R™ is the pseudo inverse of Jy,
I, € R™™ is a unit matrix and u € R™ is an arbitrary con-
stant vector. The vector u may be utilized in the other sub-
tasks. In the preseni paper, we choose u as a zero vector.

As a result, the general solution (12) gives the minimum
norm solution

dé = J}HdX,. (13)

Consequently, if the desired virtual end-point dis-
placement dX] is given, we can get the optimal joint dis-

placement df of the actual arm using (11) and (13). Subst;.
tuting (11) and (13) into (6), We can also get the resu]
virtual end-point displacement dX,

dX, = J(JTwI )y uTwax:. (14)

ting

The inverse kinematic solution presented here can be
applied to all cases shown in Fig.3. In the redundant cases
(e.g. Fig.3(a)), since J, = I, (a InxIn unit matrix) and Jy=J
, we can see dX, = dX;, . From (13), the joint displacement
vector of the actual arm reduces to

df = J*dX, (15)

On the other hand, in the over-constrained cases (e.g.
Fig.3(b)), since J,=J and J, =1, , we can see dX, = d§ .
From (11), the joint displacement vector of the actual arm
reduces to

d8 = (JTWI T wdx;, | (16)

Obviously, we can use both (11) and (13) in the singular
cases such as Fig.3(c).

Using the method presented here, the planning of the
virtual end-point displacements can be performed in the
task space and a order of priority can be assigned to each
virtual end-point motion by the weighting matrix W
according to the task environment.

Some simulation experiments of trajectory control for
a five-link planar manipulator are performed using the PD
control,

7= K,do(t)-BA(1) an

where K;€ R™™ and B;€ R™™ are nonsingular position
and velocity feedback gain matrices respectively. We used

the Appel method for the manipulator dynamics{3] and the
link parameters of the manipulator as shown in Table 1.

Fig.4(a) shows a simulation result using nine virtual
arms {n=10}, the end-points of which are on a middle point
of each link and on each joint except the first joint. In this
simulation, the desired end-point displacement of the
actual arm, dX,4 in {3), is given by a direction vector from
its'end-point to the goal point. Each desired virtual end-
point displacement is set to a null vector. Although the vir-
tual end-points try to keep their initial positions, the vir-
tual end-points move to the directions of the goal point
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Fig.4 Simulation results of the joint feedback control using the virtual arms



Tablel Link parameters

Link i (3=1, - - - ,5)
length{m) 0.4
mass(kg) 0.5
center of mass{m) 0.2
moment of inertia{kg-m”) 0.0067

since they are pulled by the actual end-point as seen in
Fig.4(a).

In Fig.4(b), we use the same virtual arms as Fig.4(a)
except for their desired end-point displacements. The
desired end-point displacement of each virtual arm is given
by the direction vector from its end-point to the position of
the first joint of the actual manipulator. While the end-
point trajectory of the actual arm is almost the same as the
one in Fig.4(a), the virtual end-points move in the direction
of the first joint of the actual manipulator as seen in
Fig.4(b).

On the other hand, in Fig.4(c), a virtual end-point is
located on the third joint of the actual arm (n=2) and both
the desired end-point displacements of the actual arm and
the virtual arm are given by the direction vectors from
their end-points to the goal point. As seen in Fig.4(c), the
virtual end-point as well as the actual end-point move to
the goal point.

Comnsequently, it can be seen that the configurations
as well as the end-point trajectory of the actual arm can be
controlled by planning the desired virtual end-point dis-
placementsin the task space.

OBSTACLE AVOIDANCE BASED ON VIRTUAL ARMS

In this chapter, we consider a trajectory planning
problem for obstacle avoidance and propose a method of
how to generate a collision-free path of the manipulator
based on the virtual arms. The method consists of two
steps : 1) planning a desired end-point displacement for
each virtual arm based on the obstacles represented in the
task space, 2) integrating them into a joint angle displace-
ment of the actual arm. The algorithm of this method is
given by the following steps.

Step 1: local search of the obstacles

Compute the positions o, (k) of the obstacles in a
searched area around the end-point of the i-th arm
and the distance d_(k) between the obstacles and the
i-th end-point where k denotes a number of the obsta-
cles in each searched area.

Step 2: computation of the desired end-point displacements

step 2-1: direction vectors of motion
Compute the unit direction vector of obstacle
avoidance for each end-point, which is the sum of
the vectors with the orientations opposite to each
obstacle and with the amplitudes weighted by
the reciprocal number of the corresponding dis-
tance d,(k), as shown in Fig.5. If there are no
obstacles in the searched area, set the direction
vector of obstacle avoidance to a zero vector. For

O goal

direction vector

of the goal

: obstacle *

direction vector
of motion ¢

i

i
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directijon vector of%
obstacle avoidance N

, &
-, searched area _
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Fig.5 Direction vectors for the actual end-point

the ¢-th virtual arm (i=1,2,--,n—1), the direction
vector of obstacle avoidance is regarded as the
direction of motion, which is denoted by «;. For
the actual arm (i{=n), compute a unit vector from
the actual end-point to the goal point. Then the
direction vector a, of motion for the actual arm is
given by a unit vector of the sum of the direction
vector of obstacle avoidance and the direction
vector of the goal. ’

step 2-2: desired end-point displacements
Compute the desired end-point displacement for
the i-th arm, dX], using
dX; =6, (18)
8; = min.[f({),d5] , (19)
where d; is the shortest one of d (k) and f(i)is a
monotone increasing function which regulates

the desired end-point displacement of the virtual
arm according to its arm length.

Step 3: computation of the weighting matrix W

Compute the weighting matrix Win {10) according to
the shortest distance d; to the obstacles for the i-th
arm. The corresponding elements of W are given by

k

W=t Ewg= W (20)
for the virtual arm (i=1,2,--,n—1), and
K, Kk

Wy == wy = e +d—, (21)

for the actual arm, where dg is a distance between the
actual end-point and the goal point. k, and k, are posi-
tive constants. If there are no obstacles in the
searched area of the i-th arm, the corresponding ele-
ments of W are set to 1 for the virtual arms and set to
k,/d, for the actual arm.

Step 4: trajectory generation of the actual arm

From dX; and Win Step 2 and 3, compute the joint
angle displacement df of the actual arm and thé
resulting end-point displacement dX, using (11), (13)
and (14).



Step 5: feasibility check

Compute the position of each end-point from the
resulting end-point displacement dX, and check
whether each end-point collides with the obstacle or
not. If the end-point of the i-th arm collides with the
obstacle, the corresponding elements of W
w; j(j=1,2,,1) , are set to kxw;; and go to Step 4,
where k, > 11s a constant. If there is no collision for all
end-points, go to Step 1 and repeat the procedure
from Step 1 to Step 5 until the end-point of the actual
arm reaches the goal point.

Since the concatenated Jacobian matrix Jin {2) hasa
systematic structure, a number of the joint degrees of free-
dom of the actual arm has little effect on the computation
amount of the algorithm. Also computation of the desired
end-point displacement for each arm can be performed in a
parallel way.

Computer simulations were performed using a five-
link planar manipulator as shown in Fig.4. Nine virtual
arms (n=10), the end-points of which are on a middle point
of each link and on each joint except for the first joint, are
used and the searched area of each end-point is a circle with
the radius of 12 centimeters. Since each link length is 40
centimeters, the searched areas of all end-points can cover
the whole arm. Therefore the relationships between the
whole arm and the obstacles can be represented by the vir-
tual end-points and the obstacles. The actual arm is also
regarded as a obstacle in order to keep away from colliding
with its own links. Fig.6 shows the simulation results,
where the constants used in the simulations are k,=500 ,
k,=300 and k=100. It can be seen that the end-point of the
actual arm reaches the goal point without any collision
with the obstacles.

CONCLUSION

In this paper, we proposed a new method to represent
the configurations of the multi-joint manipulator in the
task space using the virtual arms, and applied it to a trajec-
tory planning for obstacle avoidance. The planning of the
virtual end-point trajectories can be performed in a parallel
way, and the relationships between the whole arm and the
task environment can be represented by the virtual end-
points. Our method can be applied to highly-redundant
manipulators, and it is useful not only for the collision-free
path planning but also for the compliance control which

regulates the interactions between the manipulator and the
task environment[4].

Further research will be directed to extend the trajec-
tory planning method presented here to the global
collision-free path planning method. The actual arm may
happen to be deadlocked depending on the task environ-
ments, because the algorithm presented here uses only local
information around each end-point. To develop more intel-
ligent trajectory planning, it will be necessary to use the
global information about the task environments[5).
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Fig.6 Simulation results of the obstacle avoidance
using the virtual arms
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