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IDENTIFICATION AND REGULATION OF MECHANICAL IMPEDANCE
FOR FORCE CONTROL OF ROBOT MANIPULATORS

T. Tsuji, K. Ito 2nd B. Nagaoka
Faculty of Engincering, Hiroshima University,
Saijo-cho, Higashi-Hiroshirma, Hiroshime, Japan

Abstract. TImpedance coutrolis one of the most powerful control methods for force control of manipula-
tors. 'To apply the impedance control to actual tasks of the manipulators, there are several problems to be
solved. The present paper discusses some of them, 1) theimpedance identification uf objects manipulated by
zobots , and 2) the impedance transformation from the razk space into the joint space. For the first problem,
we propose a new method which is able o identify the stiffness of the objects. It is based on the fact that the
overall impadance at the contact point results as the sum of the odbject’s impedunte and the manipuiator's one.
Neaxt, it is pointed out that the redundant manipulator allows to choose the joint impedance. Therefore for the
second problem, we propose an impedance transformation method, which gives the closest joint
jmpedance to the desired joint imupedance in the least squared sense while satisfying the reauired erd-point
impedance.

Kerwords. Impedance control ; robot ; force control ; motor control : redundancy ; impedance transforma-

tion.

INTRODUCTION

In robot control, it is essential to know how to control complex
interactions between multi-joint arms and their environments.
Some frequently cited tasks such as turning a crank, inserting a
peginty a hele and opeaniug a door, require not oanly position
centrol of the manipulator’s end-point but also forze control in
terms of the task space coordinates {Mason,1881). For exam-
pie, counsidering the task of rotating a crank, it’s pecessary that
in a directinn from the handle to the cecter of the rotation,
the manipulator's ead-point should be as compliant as possi-
ble, because in that direction the end-point trajectory of the
manipulator is physically restricted by the handle trajectocy
of the crank. In a tangential direction of the crank, however,
the position and/or velocity of the manipulater’s esd-point
must be controlled to rotate the crani:, because in that direc-
tion the manipulator can move freely.

This kind of compliance or rigidness of movement can be speci-
Ged by mechanidal impedance of the manipulators. The
mechanical impedance provides the static and dynamic relation-
ships between force aud motion, and is a general term for
stiffness, viscosity and inertia. Fine regulations of the
mechanical impedance in multi-joint arms is one of the most
traportant issues to perform the tasks which tequire interac-
tions to their environments,

Hogan{1985a) proposed a coccept of impedance control and
showed that the position control and force control were simply
degenerate and extreme cases of the impedance control. He 2lso
showed that muiti-joint muscles and redundaney of joint
degrees of fresdom in human arms played important roles in
Sne regulation of its end-point impedance (Hogan,19855). Up
to the preseat, several approaches to the impedance cantrol of
robot  manipulators were proposed (Salisbury, 1930
Hognn, 1986,1938 : Khotib, 1987 : Cutkosky,1989). However,
the fine izapedance controller comparing with the human
motor control system bas not been developed, and several
problems are remained to be solved. Sowme of them are as follows
i {1) how to identify impedance characteristics of the eaviron-
uicnts, {2) how to determine the manipulater impedance in
the task space, and {3) how to regulate the joint servo gains
according to the given end-point fmpedanse. Amony them, the
presant paper discusses the fest and the thivd oue.
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For the first problem, we propose a new method to idexntify the
stiffness characteristics of the objects. And for the third one, we
derive the impedance transformation from the erd-point space
to the joint space, using redundant joint degrees of freedom.
This transformation procedure will be useful to solve the prob-
ferns in terms of joint servo regulations. It is shown that the
redundancy of the joint degrees of freedom allows to choose
the impedance of each joint satisfying a desired end.point
impedance.

IMPEDANCE CONTROL OF ROBOT MANIPULATOR

impedance in Multi-jeint Arm

We consider a multi-joint arm having n joints. Let the position
vectors in the joint and end-point coordinates be denoted as
€ R" and X <= R" respectively. Let also the corresponding
force vectors be denoted as r&R "and F,€ R", where nand r
are the dimensions of the joint aud end-point coordinates.

The transformation from # to X is nonlinear. The Jacobian
matrix J is the locally Unearized transformation matrix
whichis defined by {dsade aad Slotine, 1985)

dX = J(8)dd. (1)

Using the Jacobian matrix J, the transformation from Flor
is given by

r=JTF, {2)

The Jacobian matrix Jrepresents the Link structures of the
ana.

Impedance 'is a general term for stiffaess, viscosity and
inertia. Here, the stiffness in the joint coordinates aud the
end-point coordinates are defined. Note that the sarae holds
for the viscosity. The stiffness matrices are given by

Vend—~point level ; F, = K, dX 3

)

Njeintlevel s r= —K}:ﬁi



where dX=X~X* and Fwmd-~F* . X* and §° are squilibrivm
points of the corresponding vectors. Using (1)-(4}, we can
obtain,

K;=J'KJ,
which is called the active stiffness control (Salisbury, 1980).

(5)

Imped Control Law of Crank Rotation Task

We consider an impedance control taking a crank rotation asan
example, which follows the active stiffuess control (5).

First, let us define coordinates systems. Fig.l shows a multi-
joint manipulator and a crank. Assume that the rotation of the
crank is resiricted on the vertical plane {z + z ), and also the
joint O and 4 of the manipulator are locked. Then, three coor-
dinates systems are choosen as follows. Polar coordinates
®(¢, r} with its origin at the center of the crank is defined as
task coordinatss. We also define Cartesian coordinates X{z, z)
with its origin at the base of the manipulator as end-point coor-
dinates of the manipulator. The manipulator also has jeint
coordinates 6(8, ,8,,8,;). Note that the manipulator is redun-
dant to the task space.

“The nonlinear transformation from &={g, )T to Xulz, )T is
defined as

X = ¢{3). (8}
Then we can obtain
dX = J($}d3, &3]
where, in this case
L[ gl ®
Since the Jacobian matrix J, is invertible, we can see
db = 170X 6)]
F = (J7YTF, (10)

where F, aud F, are force vectors described in the end.point and
task coordinates respectively.

Let us assume that an impedance control law in the task coordi-
nates is written as

F, = ~K,3%-B,d$, {11)
where K,€ R***is a desired task stiffaess matrix , B, € R¥%is
a desired task viscosity matrix, d& = $~3° and d& = $-9°. $*
and $° are equilibrium points. Using (1)-(4) and (7)-(11), we
may obtain the impedance contrel law in the joint coordi-
nates,

rm = (JUN TR0~ (37N TB(IT . (12)
The above equation corresponds to the active stiffness control

(5). Then, actuator control torque * of the manipulator is
given by

Fig.l Crank rotation task by a manipulator.
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T =TT, (13)

where T(8,8) is a compensation term of the gravity and joint
friction torque.

The motion equation of the manipulator is given by
M(O)S + h(8.8) +9(6) + o(B) = 7 + (T ) TFine »  (14)

where , M{6) is noa-singular inertia tensor, A(8,8) is Coriclis
and centrifugal term, ¢(8) is the gravity term and v(9) is joint
friction term. F,, is the external force to the end-point
described in the task coordinates. Now, assume that the mani.
pulator and the crank move slowly, and that the gravity and
friction terms can be compensated by I'(§,8) . In this case,
the motion equation of the manipulator using the impedance
control {12) reduces to the following equation

M{8)$+Bdd+Kde=F,, , (18)

where M8} is inertia tensor in the task coordinates. Conse-
quently it is clear that the desired task stiffness and viscosity
can be achieved by the joint impedance control (12).

Crank Rotation Experiments

The impedance control was applied to the actual manipulator.
The stiffness matrix X, and the viscosity matrix B, are set as

K =diag.[ 0.5 (kgf-m/rad) - 10.{kef/m)}], {16}
By=diag.[0.25 (kgf-m-sfrad) 5.(kgf-s/m)}}, (17}

where dicg. { ] means a diagonal matrix. The equilibrium point
is &*m{ #/2(red) 0.15(m) |7,

At first, when the manipulator moves according to the control
law {12) without grasping the handle of the crank, the distur-
bance force, { = 1 kgf, is exerted to the manipulator’s end-point
in the direction of the arrow in Fig.2, showing one of the experi-
mental results. It can be seen that the manipulator's end-point
moves easily in respoase to the disturbance force,

Fig.3 shows an experimental result of the crank rotation task
using the impedance control. Change of the manipulator con-
figuration, and force vectors exerted to the ctank by the mani-
pulator are shown in Fig.3 (a) and (b) respectively. The force
were measured by force sensors attached to the crank handle.
If the manipulator’s end-point impedance in the direction from
the handle to the center of the crank is large, then a strong force
is exerted to the crank by the manipulator due to the displace-
ment error which may be caused by joint angle sensors and
joint friction, We also tried a crank rotation task using posi-
tion control. However it was impossible to rotate the crask

disturbence
3
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1, = 0220, I, = 0.160 , Iy = 0.2145 {m)

Fig. 2 Eand-point displacemnts for a disturbanes
foree Limmpedancs contrel}.



becanse of the strong force exerted to the crank haunde. Conse-
quently it is clear that the manipulator with the impedance

controller can rotate the crank more smoothly and easily than
the position controller.

To establish the impedance control of robot manipulators,

the following problems should be solved.

(1) Impedance identification of environments : when the
manipulator is in contact with an object such as a erank,
the overall impedance is affected by not only the
manipulator’s end-point impedance but also the object
impedance. In the experiments presented before, the
crank impedance is assumed to be known. In geaeral,
identification of the impedance characteristics of the
objects, such as a crank stiffness in terms of the task coor-
dinates is required.

(2) Determination of a desired impedance of the manipulator
in the task space : according to the task and the
object impedance, the manipulator’s end-point
impedance in the task space should be determined. In our
experiments, it was determined by trial and error.

(3} Impedance transformation from the task coordinatesto
the joint coordinates : servo gains associated with the
joints contribute to the end- point impedance of the mani-
pulator. This presents an inverse problem : adjusting the
servo gains at the joiats {the joint impedance) so as to
achieve a desired end-point impedance. In the experi-
ments presented before, we used the stiffness transforma-
tion (3) derived by Salisbury(1980). When the manipula-
tor is redundant, however, this transformation always
yields a singular joint stiffness matrix. It should be noted
that the arm redundancy in the impedance transforma-
tion contributes to making impedance control more flexi-
ble.

In the following, we discuss the first and third problems
among them.
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(a) change of the arm posture

4.0kgf

{b} force vectors exerted to the crank

Fiz.3 Experimental results of a crank rotation task
using impedance control.

IMPEDANCE TDENTIFICATION OF OBIJECTS

To determine an appropriate end-point impedance of manipula.
tors according to a given task, first, we 1must consider
impedance characteristics of the objects. For example, when
we want to grasp a soft object or push it, we must check the
mechanical characteristics such as stiffness, shape and mass of
the object. Then we start to apply force to it. Consequently, to
specify the manipulator impedance according to the needs of the
task, we must establish an identification method of the objects’
impedance characteristics. Thisis one of the most important
issues to develop more autonomous and flexible manipulator
control. We consider to identify the stiffness of an object
because it is one of the most essential characteristics in the
manipulation task.

Identification Algorithm

Let us consider a case whick an end-point of manipulator isin
contact with an object, as shown in Fig.4. It is assumed that
the manipulator rests in 2 joint angle 8° and that the stiffness
X,; and the direction ¢ of the object are unknown. Let the
overall stiffness at the contact point and the joint compliance
of the manipulator be denoted as X, and C; , respectively. Since
the contact of the manipulator’ s end-pom?. with the object
forras a parallel mechanism, the overall stiffness at the contact
point is given by

K, = Ky +JCITY™. (18)

Consequently if we know the overall stiffness K, , we can com-
pute the object stiffness X, . In this case, we can estimate
the stiffness and the direction of the object by the following
procedure.

Step 1: Prcset an arbitrary nonsingular stiffness matrix K;
= C;” andavxscosxty matrix B;to manipulator )omts
by adp.xs ting joint serve gains. Th:s is required for the
directions which the object does not exist.

Step 2:Estimate the overall joint compliance matrix C which
includes the effect of the object’s stiffness :

dd; S Sz - - CGim | [y
dd, € e Cam || T2

- 1B )
dd,, Ciml Cjm2 + + + + Cjmm | LTm

step 2-1:Set C'f- C; and i=1.

step 2-2 : The resultant joint displacements d9; are
measured, after applying the following torque 7; to the
joint

object

manipulator

object coordinates

X

base coordinctes

Fig.4 Manipulator in contact
with an cbject.



i hld
{kwi),
where 7° is an arbitrary small torque.

step 2-3 : Compute the overall joint compliance Ej &
{k=1,2,..,m) in Eq.(19).

(20

T = 0- (21)

step 2-4 ?HC’}; is different from the initial joint com-

pliance cz;, then ¢;i;is replaced by G -
step 2-3: If i=m , then go to step 2-6 ; otherwise set
i=i+] and go tostep 2-2.
step 26 : Set 7" = —r" and repeat the procedure from
step 2-2 to 2-4.
step 2.7: K C’, = C;,it is supposed that the manipula-
tor is not in contact with any object. Then the pro-
cedure is stopped. :
Step 3 : Compute the overall contact point stiffness matrix in
the base coordinates X, from the overall joint corapli-
ance (7,
K, =(ICJH (22)
Step 4 : Compute the object stiffness matrix in the base coordi-
nates

Ry =K~(Jo N (23)
Step §': Estimate the object stiffness matrix K, in the object
coordinates and the angle of rotation ¢ from the

base coordinates to the object coordinates using the
eigenvalues and eigenvectors of the matrix X,;"

K‘ai‘ - TZ Tr - R(é )g'obﬂr(é )» (24)

where T is an orthogonal matrix which each column is
an eigenvector of K,;," and ¥ is a diagonal matrix
which each element is an eigeavalue of X,,°.
Matrix T corresponds to a rotational matrix R(¢ ) and
Matrix T corresponds to a stiffness matrix of
object K, . ’

This procedure is only based on the measurement of the joint
angles which are caused by joint torque perturbation. Note
that it requires only joint torque controllers and angle sensors
to implement this procedure. The force sensor at the end-point
is not required.

Siraulation Experiment

A simulation experiment was performed using a three-link
planar arm as shown in Fig.5, and the link parameters used in
this experiment are shown in Table 1.

It is assumed that an object is purely elastic. The juint stiff-
ness matrix K; and the joint viscosity matrix B; used in this
experiment are

K; = diag. [10.0 10.0 10.0] (25)
B; = diag.[5.0 5.0 5.0]. (26)

We used the Newton-Euler method for the manipulator
dynamics {4 sada and Slotine, 1986).

Fig.6 shows the step responses of joint angle displacements
df,(i=1,2,3) , when we apply torque 7, to the shoulder joint.
Table 2 shows the simulation results. From Table 2, the
estimated values of the object stiffness K ,, and the object
direction é‘a agree well with the true values.

To apply our method to actual tasks, we must take inte
account an effect of the measurement errors which may be
caused by joint angle semsors, gravity force and joint fric.
tion. Further experiments using a real mampulator should be
carried out. However, note that it is not necessary to estimate
exactly the object impedance, because it depends an how to use
the object impedance in the manipulator tasks.
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Table 1 Link Parameters

TIXK1 | LINKZ | LINK3
Tength(m) : L 0.30 0.24 o.11
mass{lg) : m; 1.59 0.50 0.54
center of mass{m) : [; 0.162 0.125 0.053
moment ofinertia 1 [; | | (5103 | 478x107 | 5.57x107
(kg-m’/sTy

Table 2 Simulation Results of Impedance IdentiScation

an object stilfness matrix in the object coordinates

0.1 0.0
Ka= [o.u 100.0 }

a rotational matrix

o [0.1735188 -0.9848077
(@) - {0.9343077 0.1736434 } » $ =800

an estimated manipulator stiffness matrix

. 0.1031323 -0.0831734 -~0.0097824
C;= | ~0.083173¢4 0.1387701 -0.0064132
~0.0097824 —0.0064132 0.1989733

an estimated object stiffness matrix in the base coordinates

Bl [ 96.9876343 ~17.0839900 ]
sb ~17.0839628 3.1124635

an estimated object stiffness matrix in the object cosrdinales

B m [ 0.10008 0.0 ]
ab 0.0 100.00004

an estimated rotational matrix

R(3) = {0.1?36491 -0.9848076

0.9848076 01738451 ] s ¢ = 79.999948

nominal posture : 8, = 10.0° , §; =~T70.0° , §, = 35.0°

Fig.3 A three-link planar arm.

(deg )k dd

0.54

Fig 6 Step responses of joint anzle displacements.




IMPEDANCE TRANSFORMATION
IN REDUNDANT ARM

The stiffness relationship between the joint and end-point coor-
dinates is given by
T
K;=J'K,J. 27
The corresponding transformation of compliance matrices is
given by

C.=JcJ" (28)
where

C,=K -, (29)

C;= K% (30)

Fig.7 shows the transformations between the force and dis-
placement through the stiffness and compliance matrices.

I the stiffness matrix K, is consingular in the end-poiat coor-
dinates, the joint compliance matrix C; seers to be computed
from {27) and {30). However, if the manipulator is redundant
such as the human arm, the impedance transformation between
different levels brings a delicate issue. That is, evenif K, is
nonsingular and Jacobian matrix Jis of full row rank, X;will
be singular. Then C; can not be computed from (30). More-
over, it should be noted that as the manipulator is redundant,
the transformation of the end.-point stiffiess to the joint stiff-
ness becomes an under-constrained problem (Tsuji, Ito ond
Nagamachi, 1988).

Let us consider the method to transform K into the joint stiff-
ness K;, when the end-point stiffness matrix K, is given and is
ponsingular. From (28) and (29), wecansee

C, =K =107 (31)

This implies that the transformation problem of stiffness or

compliance is equivalent to solve the matrix equation (31) for

the joint compliance matrix C;.

The general solution of the matrix equation (31} is given by (see
APPENDIXI)

;= T (TN +{2=Tr 12T )] (32)

where Z& R™"™ is an arbitrary constant matrix and the

superscript * denotes the Moore-Penrose generalized inverse
(Whitney,1972). Equation {(32) means that the compliance of
each joint can be arbitrarily specified through the matrix 7
while satisfying the desired end-point impedance. Note that
the same holds for the viscosity transformation.

It is remained to determine the arbitrary matrix 2. Wheu Zis
choosen as a zero matrix, the solution in {32) reduces to the
minimum norm solution, that is to say, to minimize

HEA T {*'(C,‘TC,‘”” {33)

where tr{4) means a trace of matrix 4.

Fig.7 Stiffness relationship between
joint and end-point coordinates.

Now, it is assumed that a desired joiat compliance €} is given
according to a task. Then we consider to place C:, closest to C.°
in the least squared sense. In this case, the goal is to find a
matrix Z to minimize -

HG=Cill =[#r{ (G=C)T(G=C ™. (34)

This least squared problem can be solved (see APPENDIX
1Y), yielding

Z=C;. (35)

Substituting (35) into {32), the final solution of the compliance
transformation is given by

Cj= IrCITy 40~ T ICH (I N, {38)

This solution gives the join: compliance C; which is exactly
transformed into the desired end-point compliance C, , and is
the closest one to the desired joint compliance €. It also
implies that C; usually will be nonsingular when (" is non-
singular. Consequently we can immediately obtain the joint
stiffness matrix K.

Table 3 shows the simulation results of stiffness transformation
ina threelink planar arm (Fig.3). The end-point stiffaess X,
is given as aa identity matrix. In case 2, the compliance of
wrist joint is larger than the shoulder and elbow joints. Con-
versely in case 3, the compliance of shoulder joint is larger
than the others. Note that the end-point stiffness in all cases
have an identity matrix and that each C;in case 2 and 3isa
nonsiogular matrix.

CONCLUSION

In this paper, we discussed 1) the impedance identification of
the objects manipulated by robots and 2} the impedance
transformation from the task space into the joint space.

Corresponding to the frst problem, we proposed the identifica-
tion method of an object stiffness. It was shown that ouriden-
tification method could estimate not only the object stiffness
but also the object coordinates. For the second problem, we
proposed the transformation method of the end-point
impedance into the joint impedance. This method gave the
closest impedance to the desired joict impedance in the least
squared sense while satisfying the desired end-peint impedance.
The human arm also has redundancy (Mussa Jvaldi,1986), and
our transformation method can explain a part of the flexibility
of human movements.

Future research will be directed to determine the task
impedance appropriate to the specific tasks. This leads to

the impedance planning problem and considered as one of the
common problems in robot control and robot planning.

Table 3 Joint Compliance Matrices
with the Same End-point Stiffness

transformation matrix 2 joint compliance €,

i

0.0 0.0 0.0 124 ~4.4 ~48
CASE 1 0.0 0.0 0.0 -44 93 49
0.0 0.0 0.0 -48 49 3.2
128 00 o0 93 0.69 0.43
CASE 2 00 100 00 059 068 ~40
0.0 0.0 100.0 045 ~40 93.3
1000 0.0 0.0 20.8 ~17.0 12.2
CASE 3 0.0 800 00 -170 219 -1740
00 0.0 100 122 -~17.0 Q.01

nominal posture : 9, = =207 , 8, = 10° | 8, = 50"
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APPENDIX 1

The General Solution of C

12, ¥
P won

T‘

‘The general solution of the matrix equation {31) is given by

Cy= IO +{2-THI2(7* D)) . (A-1)
proof. Substituting (A-1) into (31), we have
JCIT = JPC L) T+ 2~ T I T I
- Cz (A‘?}

Hence, it is clear that C;in (A-1) is a solution of the matrix
equation {31). On the other band, let an arbitrary solution be
denoted as §, then we can write

S FCLINV 42~ T2 (T DT
where 2 is defined by
Zy=S-r o7

(A-3)

(A-4)
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This completes the proof.

APPENDIX O

Lenst Squared Selution of Compliance Transformation

Substituting {32) into {34), we obtain the cost function
G(2) = [ (G =T C (I 2= IZT* YT
(G- CIN +2-T I2(IF IR (As)

The problem is to Snd Z that satisfies equation {32) fora
given C, and J while minimizing the cost function G{Z). The
necessary condition that the optimal solution must satisfy is

3G(2)ja4=0. {A-6)
Substituting {A-3) into {A-6) dnd expanding it, we have
=G+ TICS TS = =24+ T I2T], (A-7)

using the partial differential formulas about trace of matrices
{Athans, 1957)

tr{AX)/0X = A {A-8)
ar(XTX) oKX =2X (A-9)
atr{AXB)/3X = ATBT {A-10)
tr{AXTBXC)}0X = BXCA+BTXATCT  (A-1Y)
and the properties of J*

(rNT =Tt {A12)
(PNTIHI= T (A-13)

Consequently when we choose
Z=Gj, (a-14)

equation (A-7) holds clearly. Substituting the aboveinto (32),
we obtain

Ci= FCLINH O -TICHI DT (A1)
It can be seen that the above equation satisfies the original

compliance relationship (31} between the joint and the end.
point coordinates.



