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MOTOR IMPEDANCE AND INVERSE KINEMATICS IN MUSCULOSKELETAL SYSTEMS

ABSTRACT -~ A method for resolving kinematic
redundancies of musculoskeletal systems 1is
discussed. First, the relationships between muscle
force and end-point motion are derived by defining
two kind of Jacobian matrices. Then it is shown
that the motor impedance allows to transform not
only the end-point displacement but also the end-
point velocity and acceleration into the joint and
nuscle coordinates.

INTRODUCTION

The CNS plans arm movements by specifying a
trajectory of the hand in Euclidean(end-point)
space[1]. Consequently, it is necessary to derive
the coordinated patterns of joint and nuscle
levels, which realize the end-point trajectory.
This is called the inverse kinematics problem and
is also one of the most important problems in robot
controll2].

In general, since the number of degrees of
freedom in the human arm is larger than one in the
task space, there exists an infinite number of
solutions to the inverse kinematics problem. In
order to determine a definite solution, it is
necessary to impose some constraint on the
transformation.

Mussa Ivaldi showed that the joint stiffness
could act as a constraint condition to resolve the
inverse kinematics problem. of redundant arm{3]. In
this paper, we emphasize the role of motor
impedance which transmits the muscle force to the
end-point motion. First, the relationships between
muscle force and end-point motion are derived.
Then it is shown that the motor impedance allows to
transform not only the end-point displacement but
also the end-point velocity and acceleration into
the joint and muscle ccordinates.

MULTI-JOINT ARM MOVEMENTS

We congider a multi-joint arm having n joints.
Let the position vectors in the joint coordinates
and the end-point coordinates be denoted as 6 ¢ RB
and Xe€ R¥ respectively. The transformationfrom
to X is given by nonlinear equation,

X = p(8) . (1

The Jacobian matrix J is the locally linearized
transformation matrix which is defined byl2]

dX = J(8)de . (2)

The principle of duality between velocity and force
in the mechanies leads to the equation,

T = JTp 3)

where TERM and F €RT are the force vectors in
the joint coordinates and the end-point
coordinates, respectively.

On the other hand, arm movements are generated
by » muscles which act on the joints. Let the
muscle length vector and the muscle force vector be
denoted as L €R®(define that its extending
direction is positive) and fe R®(define that the
contracting direction is positive). The muscle
length vector L is given by nonlinear function of
joint angle vector §,

L = q(8) . : (4)

Locally linearizing (4) around a posture 8 , we
can see,

aL = G@)d 8. (5)

The transformation G is another Jacobian matrix
which determines the relationships between joint
and muscle movements. Similarly to (3), the
transformation from f to T is given by

T = GIf, (6}

Consequently, the relationships among muscle, joint
and end-point movements can be represented by two
kind of Jacobian matrices.

MOTOR IMPEDANGE AND MUSCLE FORCE

The motor impedance which is a general term for
stiffness, viscosity and inertis provides the
static and dynamic relations between force and
motion{4].

First, consider the stiffness relationships
among nuscle, joint and end-point level. The three
kind of stiffness matrices are defined as follows,

1) end-point level ; F = -KqdX {7)
2) joint level ;T = -K;a8 : (8
3) muscle level ; £ = EKpdl 9

where dX=X-X®, d6 =g -g € and dL=L-L®, X%, g® and
L® are equilibrium points of the corresponding
vectors. The muscle stiffness matrix Ky is
adjustable by the viscoelastic properties of
muscles and the propriocceptive reflexes[5].

The stiffness relationships between each level
are derived using (2)-(5),

Ky = 37T (10)
= aTK,C. (11)

Then, the transformations of the compliance



matrices which are the inverse of the corresponding
stiffness matrices are given by

Ce = JC337T (12)
Cy = GC3GT . (13)

I

Fig.1{a) shows the transformations between the
force and motion by the stiffness and compliance
matrices. From the figure, we find the pathway to
be followed in order to go from the muscle force to
the end-point displacement. The corresponding
relation is written as

ax = Jjec6Tr , (14)
which gives the transformation of the muscle force
to the end-point displaceument.

Next, consider the transformation of the inertia
matrix. In general, the motion equation of the
multi-joint arm can be written as

M(B) B+ n(0,8)+g(® = T ,

where, M(9®) is non-singular inertia matrix,
h(©,8 ) is Coriolis and. centrifigual term and
g( 8) is the gravity term. Now, assume that the arm
is at rest and the gravity term doesn't exist, such
as planar movements. The transformation from the
joint acceleration to the end-point one is given by

{15)

I

X=7J8. . (16)
Then we have
X = -3M~-167¢ 17

which defines the transformation of the muscle
force to the end-point acceleration. Substituting
{3) into (17) yields

X = gu-15TF (18)

where the matrix JM-1JT is called the mobility[4].
Fig.1{b) shows the transformation between the force
and acceleration by the inertia matrices. In the
case that there exists the gravity force, we can
replace the joint torque T to T =T -g{8)
which means compensation of the gravity force by
the muscle force.

INVERSE KINEMATICS WITH IMPEDANCE CONSTRAINTS

Transforming the joint movements into the muscle
movements can be performed using the Jacobian
matrix G. However, it is not easy to transform the
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end-point mevement to the joint movement due to the
arm redundancy.

In Fig.1{a), there exists a pathway that starts
from the end-point displacement dX and reaches to
the joint displacement d6: through the end-~point

force F and the joint torque T .
a8 = C3ITKeax (18)

Assuming that the matrices Ky and Kj are non-
singular, we have[3]

do = K3~ 1oT(R;-19T)-1ax . (19)

In a similar way, the transformation from the
end-point acceleration to the Jjoint angle
acceleration is given by

§= u-13T(gu-17T)-1% . (20)

{(19) and (20) allow to resolve the inverse
kinematics problem of the redundant arm. On the
inverse kinematics problem of the redundant arm,
Whitney proposed to evaluate the solution to (2) by
minimizing the quadratic cost function,

Q(de ) = a6 Twae (21)

where WeRBXD ig a symmetric positive definite
weighting matrix{6]. This yields the instantaneous
inverse kinematics of motion

a6 = w~1JT(Jw-1JT)-1dx . (22)

Comparing (22) to (19) and (20), it is known
that the weighting matrix W is replaced-with the
joint stiffness matrix K; and the inertia matrix M,
respectively. This means that we can gain the
instantaneous inverse kinematics weighted by the
mechanical properties of the arm , i.e., by the
motor impedance.

CONCLUSION

In this paper, first, the relationships among
muscle, joint and end-point movements were derived
by two kind of the Jacobian matrices. Then, it was
shown that the motor impedance played the role as
the constraints to solve the inverse kinematics
problem of the redundant arm. Future research will
be directed how to plan the end-point impedance
appropriate to the specific tasks. This is one of
the common problems to realize the impedance
regulation in human arm and robotic manipulator.
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